Câu hỏi:

06/10/2025 7 Lưu

Cho hàm số \[f(x) = \left\{ {\begin{array}{*{20}{l}}{x + m{\rm{ n\~O u }}x < 0,}\\{{x^2} - 1{\rm{ n\~O u }}x \ge 0}\end{array}} \right.\] với \(m\) là tham số.

Biết hàm số \(f(x)\) có giới hạn hữu hạn khi \(x \to 0\). Tìm \(m\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} - 1} \right) = - 1,\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} (x + m) = m\) nên \(m = - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 2{\rm{x}} + 3}}{{x + 1}} = \frac{{{1^2} - 2.1 + 3}}{{1 + 1}} = 1\).

Câu 2

A. \(4\).                      
B. \(1\).                   
C. \(2\).                           
D. \(3\).

Lời giải

Chọn A

Dễ thấy \(\mathop {\lim }\limits_{x \to 2} \frac{{x + 2}}{{x - 1}} = \frac{{2 + 2}}{{2 - 1}} = 4\)

Câu 3

A. \(5\).                     
B. \(6\).                    
C. \(11\).                         
D. \(9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(0\).                      
B. \(\frac{2}{\pi }\).                             
C. \(\frac{\pi }{2}\).                       
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \( - 5\).                  
B. \(1\).                    
C. \(5\).                           
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\]\[\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\].                     
B. \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\]\[\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\].
C. \[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\]\[\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\].                     
D. \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\]\[\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP