Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau:

Hãy xác định phương sai của mẫu số liệu trên (làm tròn kết quả đến hàng phần trăm).
Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau:
Hãy xác định phương sai của mẫu số liệu trên (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:

Chọn giá trị đại diện cho các nhóm số liệu, ta có:
Tổng số vận động viên là: \(3 + 7 + 8 + 2 = 20\).
Thời gian chạy trung bình của các vận động viên là:
\(\bar x = \frac{1}{{20}}(10,3.3 + 10,5.7 + 10,7.8 + 10,9.2) = 10,59\) (giây).
Phương sai của mẫu số liệu là:
\({s^2} = \frac{1}{{20}}\left( {10,{3^2}.3 + 10,{5^2} \cdot 7 + 10,{7^2} \cdot 8 + 10,{9^2}.2} \right) - 10,{59^2} = 0,0299 \approx 0,03\).
Đáp án: 0,03.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bổ sung thêm các giá trị đại diện, ta lập được bảng sau:
Nhóm |
\({{\bf{c}}_{\bf{i}}}\) |
\({{\bf{n}}_{\bf{i}}}\) |
\([44;46)\) |
45 |
3 |
\([46;48)\) |
47 |
3 |
\([48;50)\) |
49 |
10 |
\([50;52)\) |
51 |
15 |
\([52;54)\) |
53 |
7 |
\([54;56)\) |
55 |
2 |
|
|
\(N = 40\) |
Từ mẫu số liệu đã cho, ta tính được số trung bình là:
\(\bar x = \frac{{3.45 + 3.47 + 10.49 + 15.51 + 7.53 + 2.55}}{{40}} = \frac{{2012}}{{40}} = 50,3\).
\(\bar x\) không phải là số nguyên nên để tính phương sai ta tính:
\(\overline {{x^2}} = \frac{{{{3.45}^2} + {{3.47}^2} + {{10.49}^2} + {{15.51}^2} + {{7.53}^2} + {{2.55}^2}}}{{40}} = 2536.\)
Do đó \({s^2} = \overline {{x^2}} - {(\bar x)^2} = 2536 - 50,{3^2} = 2536 - 2530,09 = 5,91\).
Vậy mẫu số liệu về chiều dài của 40 trẻ sơ sinh có độ lệch chuẩn là \(s = \sqrt {5,91} \approx 2,43\).
Đáp án: 2,43.
Lời giải
Khoảng biến thiên của điểm thi của học sinh hai lớp 12B là \({R_B} = 10 - 5 = 5\).
Vì \({R_B} > {R_A}\) nên điểm thi khảo sát môn Toán của lớp 12B phân tán hơn của lớp 12A.
b) Sai. Điểm trung bình môn Toán trong kỳ khảo sát của lớp 12A là :
\({\overline x _A} = \frac{{2.6,5 + 6.7,5 + 12.8,5 + 10.9,5}}{{30}} = \frac{{17}}{2} = 8,5\).
Số điểm trung bình môn Toán trong kỳ khảo sát của lớp 12B là :
\({\overline x _B} = \frac{{2.5,5 + 12.6,5 + 10.7,5 + 5.8,5 + 1.9,5}}{{30}} = \frac{{36}}{5} = 7,2\).
Vì \({\bar x_A} > {\bar x_B}\) nên số điểm trung bình môn Toán trong kỳ kiểm tra đánh giá của lớp 12A lớn hơn của lớp 12B.
c) Đúng. Lớp A có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
.
d) Đúng. Lớp B có ta có: \(\frac{n}{4} = 7,5\,\,;\,\,\frac{n}{2} = 15;\,\,\frac{{3n}}{4} = 22,5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.