Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {e^x} + 2\sin x\) thỏa mãn \(F\left( 0 \right) = 20\) là:
Quảng cáo
Trả lời:
Chọn B
\(F\left( x \right) = \int {f\left( x \right){\rm{d}}x = \int {\left( {{e^x} + 2\sin x} \right)} } \,{\rm{d}}x = {e^x} - 2\cos x + C\)
Mà \(F\left( 0 \right) = 20 \Leftrightarrow {e^0} - 2\cos 0 + C = 20 \Leftrightarrow C = 21\) .
Vậy \(F\left( x \right) = {e^x} - 2\cos x + 21\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Diện tích hình phẳng: \[S = \int\limits_0^a {\left| {f\left( x \right)} \right|{\rm{d}}x} = \int\limits_0^c {\left| {f\left( x \right)} \right|{\rm{d}}x} + \int\limits_c^a {\left| {f\left( x \right)} \right|{\rm{d}}x} = \int\limits_0^c {f\left( x \right){\rm{d}}x} - \int\limits_a^c {f\left( x \right){\rm{d}}x} \].
Lời giải
a) Đúng. Ta có \(V\left( t \right) = \int {V'\left( t \right){\rm{d}}t = \int {k.\sqrt t {\rm{d}}t} } \).
Vậy hàm số \(V\left( t \right)\) là một nguyên hàm của hàm số \(f\left( t \right) = k.\sqrt t \).
b) Đúng. Ta có \(V\left( t \right) = \int {V'\left( t \right){\rm{d}}t = \int {k.\sqrt t {\rm{d}}t} } = \frac{{2k}}{3}.t\sqrt t + C\), với \(0 \le t \le 24\) và \(k,\,\,C\) là các hằng số.
c) Sai. Do ban đầu bể chứa dầu ban đầu có \(50000\) lít dầu nên \(V\left( 0 \right) = 50\,000 \Rightarrow C = 50\,000\).
Mặt khác sau 4 giờ bơm liên tục, thể tích dầu trong bể đạt \(58000\) lít nên ta có:
\(V\left( 4 \right) = \frac{{2k}}{3}.4\sqrt 4 + 50000 = 58000 \Leftrightarrow k = 1500\).
Vậy \(V\left( t \right) = 1\,000.t\sqrt t + 50\,000\).
Sau 16 giờ bơm liên tục, thể tích dầu trong bể đạt được:
\(V\left( {16} \right) = 1\,000.16\sqrt 6 + 50\,000 = 114\,000\) lít.
d) Đúng. Trong quá trình bơm dầu, nếu sau mỗi giờ lượng dầu bị rò rỉ đều đặn với tốc độ \(500\) lít/giờ, thì tại thời điểm \(t\) bằng 9 giờ, thể tích dầu trong bể là
\(V\left( 9 \right) = 1\,000.9\sqrt 9 + 50\,000 - 500.9 = 72\,500\) lít.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

