Câu hỏi:

07/10/2025 12 Lưu

Một cái cổng hình Parabol như hình vẽ sau:

Đặt hệ trục \(Oxy\) như hình vẽ.  Gọi PT Parabol có dạng:  \(\left( P \right):\,\,y = a{x^2} + bx + c\). (ảnh 1)

Chiều cao \(GH = 4\,{\rm{m}}\), chiều rộng \(AB = 4\,{\rm{m}}\), \(AC = BD = 0,9\,{\rm{m}}\). Chủ nhà làm hai cánh cổng nhựa lõi thép UPVC, khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1\,500\,000\) đồng/m2, còn các phần để trắng làm xiên hoa có giá là \(1\,000\,000\) đồng/m2. Tổng số tiền để làm hai phần nói trên là bao nhiêu triệu đồng? (kết quả làm tròn đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt hệ trục \(Oxy\) như hình vẽ.

Gọi PT Parabol có dạng:  \(\left( P \right):\,\,y = a{x^2} + bx + c\).

\(\left( P \right)\) có đỉnh \(G\left( {0;\,4} \right)\) và đi qua \(B\left( {2;\,0} \right)\) suy ra: \(a =  - 1;\,b = 0;\,c = 4\) \( \Rightarrow \left( P \right):\,\,y =  - {x^2} + 4\).

Ta có: \({x_E} = {x_D} = 1,1 \Rightarrow {y_E} =  - 1,{1^2} + 4 = 2,79\) \( \Rightarrow ED = 2,79\).

\({S_{CDEF}} = CD.DF = 2,2.2,79 = 6,138\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Diện tích hình phẳng giới hạn bởi Parabol \(\left( P \right)\)  và trục hoành là

\({S_{\left( P \right)}} = \int\limits_{ - 2}^2 {\left( { - {x^2} + 4} \right)}  = \frac{{32}}{3}\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Suy ra diện tích làm xiên hoa là: \(S = {S_{\left( P \right)}} - {S_{CDEF}} = \frac{{6793}}{{1500}}\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Đổi đơn vị: \(1\,500\,000\) đồng/m2 \( = 1\,,5\) triệu đồng/m2, \(1\,000\,000\) đồng/m2 \( = 1\,\)triệu đồng/m2.

Tổng số tiền để làm hai phần nói trên là:

\(T = 6,138.1,5 + \frac{{6793}}{{1500}}.1 \approx 13,7\) (triệu đồng).

Đáp án: 13,7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thể tích cát ban đầu là: \(\int\limits_0^{20} {v\left( t \right){\rm{d}}t}  = \int\limits_0^{20} {0,2t + 13\,{\rm{d}}t}  = 300\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Bán kính đường tròn đáy parabol tròn xoay khi chiều cao cát còn 4cm là: \(\frac{{8\pi }}{{2\pi }} = 4\).

Xét parabol \(\left( P \right):y = a\sqrt x \) đi qua điểm \(A\left( {4;4} \right)\) như hình vẽ

Một chiếc đồng hồ cát như hình vẽ gồm hai phần đối xứng nhau qua mặt phẳng nằm ngang và đặt trong một hình trụ. Thiết diện thẳng đứng qua trục của nó là hai parabol chung đỉnh và đối xứng nhau qua mặt phẳng nằm ngang.  (ảnh 2)

Ta có: \(A\left( {4;4} \right) \in \left( P \right) \Rightarrow 4 = a\sqrt 4  \Rightarrow a = 2\). Suy ra \(\left( P \right):y = 2\sqrt x \).

Khi đó thể tích parabol tròn xoay tạo ra bằng cách xoay hình phẳng giới hạn bởi parabol \(\left( P \right)\), trục \(Ox\) và hai đường thẳng \(x = 0\), \(x = h\) quanh trục \(Ox\) là:

\(V = \pi \int\limits_0^h {{{\left( {2\sqrt x } \right)}^2}{\rm{d}}x}  = \frac{{4\pi {x^2}}}{2}\left| {\begin{array}{*{20}{c}}{^h}\\{_0}\end{array}} \right. = 2\pi {h^2}\) (đvtt).

Suy ra: \(2\pi {h^2} = 300\) \( \Rightarrow h = \sqrt {\frac{{150}}{\pi }} \).

Vậy chiều cao khối trụ bên ngoài là: \(2.\left( {\frac{3}{2}.\sqrt {\frac{{150}}{\pi }} } \right) \approx 21\,\,{\rm{cm}}\).

Đáp án: 21.

Lời giải

Khi xe dừng hẳn thì vận tốc bằng 0, do đó \( - 4t + 20 = 0 \Leftrightarrow t = 5\) (giây).

Từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường là:

\(S = \int\limits_0^5 {v\left( t \right){\rm{d}}t}  = \int\limits_0^5 {\left( { - 4t + 20} \right){\rm{d}}t}  = 50\) (mét).

Đáp án: 50.

Câu 5

A. \(V = \frac{{406}}{{15}}\).                              
B. \(V = \frac{{406}}{{15}}\pi \). 
C. \(V = \frac{{22}}{3}\pi \).                                     
D. \(V = \frac{{512}}{{15}}\pi \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\int {2025\sin x\,{\rm{d}}x} = \sin 2025x + C\).                                  
B. \(\int {2025\sin x\,{\rm{d}}x} = {\sin ^{2025}}x + C\).    
C. \(\int {2025\sin x\,{\rm{d}}x} = - 2025\cos x + C\).                                  
D. \(\int {2025\sin x\,{\rm{d}}x} = 2025\cos x + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP