Một cái cổng hình Parabol như hình vẽ sau:

Chiều cao \(GH = 4\,{\rm{m}}\), chiều rộng \(AB = 4\,{\rm{m}}\), \(AC = BD = 0,9\,{\rm{m}}\). Chủ nhà làm hai cánh cổng nhựa lõi thép UPVC, khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1\,500\,000\) đồng/m2, còn các phần để trắng làm xiên hoa có giá là \(1\,000\,000\) đồng/m2. Tổng số tiền để làm hai phần nói trên là bao nhiêu triệu đồng? (kết quả làm tròn đến hàng phần chục).
Một cái cổng hình Parabol như hình vẽ sau:
Quảng cáo
Trả lời:

Đặt hệ trục \(Oxy\) như hình vẽ.
Gọi PT Parabol có dạng: \(\left( P \right):\,\,y = a{x^2} + bx + c\).
\(\left( P \right)\) có đỉnh \(G\left( {0;\,4} \right)\) và đi qua \(B\left( {2;\,0} \right)\) suy ra: \(a = - 1;\,b = 0;\,c = 4\) \( \Rightarrow \left( P \right):\,\,y = - {x^2} + 4\).
Ta có: \({x_E} = {x_D} = 1,1 \Rightarrow {y_E} = - 1,{1^2} + 4 = 2,79\) \( \Rightarrow ED = 2,79\).
\({S_{CDEF}} = CD.DF = 2,2.2,79 = 6,138\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Diện tích hình phẳng giới hạn bởi Parabol \(\left( P \right)\) và trục hoành là
\({S_{\left( P \right)}} = \int\limits_{ - 2}^2 {\left( { - {x^2} + 4} \right)} = \frac{{32}}{3}\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Suy ra diện tích làm xiên hoa là: \(S = {S_{\left( P \right)}} - {S_{CDEF}} = \frac{{6793}}{{1500}}\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Đổi đơn vị: \(1\,500\,000\) đồng/m2 \( = 1\,,5\) triệu đồng/m2, \(1\,000\,000\) đồng/m2 \( = 1\,\)triệu đồng/m2.
Tổng số tiền để làm hai phần nói trên là:
\(T = 6,138.1,5 + \frac{{6793}}{{1500}}.1 \approx 13,7\) (triệu đồng).
Đáp án: 13,7.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích cát ban đầu là: \(\int\limits_0^{20} {v\left( t \right){\rm{d}}t} = \int\limits_0^{20} {0,2t + 13\,{\rm{d}}t} = 300\,\,{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
Bán kính đường tròn đáy parabol tròn xoay khi chiều cao cát còn 4cm là: \(\frac{{8\pi }}{{2\pi }} = 4\).
Xét parabol \(\left( P \right):y = a\sqrt x \) đi qua điểm \(A\left( {4;4} \right)\) như hình vẽ
Ta có: \(A\left( {4;4} \right) \in \left( P \right) \Rightarrow 4 = a\sqrt 4 \Rightarrow a = 2\). Suy ra \(\left( P \right):y = 2\sqrt x \).
Khi đó thể tích parabol tròn xoay tạo ra bằng cách xoay hình phẳng giới hạn bởi parabol \(\left( P \right)\), trục \(Ox\) và hai đường thẳng \(x = 0\), \(x = h\) quanh trục \(Ox\) là:
\(V = \pi \int\limits_0^h {{{\left( {2\sqrt x } \right)}^2}{\rm{d}}x} = \frac{{4\pi {x^2}}}{2}\left| {\begin{array}{*{20}{c}}{^h}\\{_0}\end{array}} \right. = 2\pi {h^2}\) (đvtt).
Suy ra: \(2\pi {h^2} = 300\) \( \Rightarrow h = \sqrt {\frac{{150}}{\pi }} \).
Vậy chiều cao khối trụ bên ngoài là: \(2.\left( {\frac{3}{2}.\sqrt {\frac{{150}}{\pi }} } \right) \approx 21\,\,{\rm{cm}}\).
Đáp án: 21.
Lời giải
Khi xe dừng hẳn thì vận tốc bằng 0, do đó \( - 4t + 20 = 0 \Leftrightarrow t = 5\) (giây).
Từ lúc giảm ga và kéo phanh đến khi dừng hẳn, mô tô di chuyển được quãng đường là:
\(S = \int\limits_0^5 {v\left( t \right){\rm{d}}t} = \int\limits_0^5 {\left( { - 4t + 20} \right){\rm{d}}t} = 50\) (mét).
Đáp án: 50.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.