Cho hai biến cố \[A\] và \[B\], với \[P\left( B \right) = 0,8\], \[P\left( {A|B} \right) = 0,7\], \[P\left( {A|\overline B } \right) = 0,45\]. Tính \[P\left( {B|A} \right)\].
Quảng cáo
Trả lời:

Chọn B
Ta có: \[P\left( {\overline B } \right) = 1 - 0,8 = 0,2\]. Công thức Bayes: \[P\left( {B|A} \right) = \frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right)}}\].
\[ \Rightarrow P\left( {B|A} \right) = \frac{{0,8.0,7}}{{0,8.0,7 + 0,2.0,45}} = \frac{{56}}{{65}}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Với mọi biến cố \(A\) và \(B\), \(P\left( B \right) > 0\) ta có \(P\left( {\overline A |B} \right) = 1 - P\left( {A|B} \right) = 1 - 0,7 = 0,3\).
Câu 2
Lời giải
Chọn A
Ta có: \[P\left( B \right) = 1 - P\left( {\overline B } \right) = 0,8\].
Theo công thức xác suất toàn phần, ta có:
\[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,8.0,5 + 0,2.0,3 = 0,46\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.