Câu hỏi:

08/10/2025 67 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên sau:

index_html_533fc920aa3340dd.png

Số nghiệm phương trình \(2f\left( x \right) - 5 = 0\) là:

\(2\).

\(1\).

\(3\).

\(0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Ta có: \[2f\left( x \right) - 5 = 0 \Leftrightarrow f\left( x \right) = \frac{5}{2}\].

Từ bảng biến thiên của hàm số \(y = f\left( x \right)\) suy ra số nghiệm phương trình \(2f\left( x \right) - 5 = 0\) là \(1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện \(\left\{ \begin{array}{l}x > 0\\1700 - 7x > 0\end{array} \right. \Leftrightarrow 0 < x < \frac{{1700}}{7}\).

Doanh thu được khi công ty sản xuất và tiêu thụ hết \(x\) sản phẩm là \(R\left( x \right) = xp\left( x \right) = 1700x - 7{x^2}\).

Do đó, lợi nhuận thu được là

\(P\left( x \right) = xp\left( x \right) - C\left( x \right)\)\( = 1700x - 7{x^2} - \left( {16\,000 + 500x - 1,6{x^2} + 0,004{x^3}} \right)\)

\(P\left( x \right) = - 0,004{x^3} - 5,4{x^2} + 1200x - 16\,000\), \(0 < x < \frac{{1700}}{7}\).

\(P'\left( x \right) = - 0,012{x^2} - 10,8x + 1200\); \(P'\left( x \right) = 0 \Leftrightarrow - 0,012{x^2} + 10,8x + 1200 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1000\\x = 100\end{array} \right.\).

Đối chiếu điều kiện ta có \(x = 100\).

Lập bảng biến thiên của hàm số, ta thu được kết quả là

\(\mathop {\max }\limits_{\left( {0;\frac{{1700}}{7}} \right)} P\left( x \right) = P\left( {100} \right) = 46\,000\) (nghìn đồng).

Vậy công ty cần sản xuất 100 sản phẩm thì lợi nhuận thu được là cao nhất.

Đáp án: 100.

Lời giải

a) Đúng.Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{{10}}\) (giờ).

Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{{10}} \cdot 480000 = 48000.\) (đồng).

b) Sai.Gọi \(x\)(km/h) là vận tốc của tàu, \(x > 0\).

Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{x}\) (giờ).

Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\)(nghìn đồng).

Hàm chi phí cho phần thứ hai là \(p = k{x^3}\) (nghìn đồng/ giờ).

Khi \(x = 10 \Rightarrow p = 30 \Rightarrow k = 0,03\) nên \(p = 0,03{x^3}\) (nghìn đồng/ giờ).

Do đó chi phí phần 2 để chạy \(1\)km là: \(\frac{1}{x} \cdot 0,03{x^3} = 0,03{x^2}\)(nghìn đồng).

Vậy tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).

c) Đúng.Tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).

Thay \(x = v = 30\)(km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,{03.30^2} = 43\)(nghìn đồng).

d) Đúng.\(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2} = \frac{{240}}{x} + \frac{{240}}{x} + 0,03{x^2} \ge 3\sqrt[3]{{1728}} = 36.\)

Dấu “=” xảy ra khi \(x = 20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Hàm số có giá trị cực tiểu bằng \( - 1\).

Hàm số có giá trị nhỏ nhất bằng \( - 1\).

Hàm số có đúng một cực trị.

Hàm số đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP