Câu hỏi:

09/10/2025 18 Lưu

Để chuẩn bị cho buổi liên hoan của gia đình, bác Ngọc mua hai loại thực phẩm là thịt lợn và cá chép. Giá tiền thịt lợn là \(130\) nghìn đồng/kg, giá tiền cá chép là \(50\) nghìn đồng/kg. Bác Ngọc đã chi \(295\) nghìn để mua \(3,5\,\,{\rm{kg}}\) hai loại thực phẩm trên. Gọi \(x\) và \(y\) lần lượt là số kilogam thịt lợn và cá chép mà bác Ngọc đã mua. Hệ phương trình bậc nhất hai ẩn \(x\) và \(y\) là

A. \(\left\{ \begin{array}{l}x + y = 3,5\\130x + 50y = 295\end{array} \right.\).

B. \(\left\{ \begin{array}{l}x - y = 3,5\\130x + y = 295\end{array} \right.\).       

C. \(\left\{ \begin{array}{l}x + y = 3,5\\x + 50y = 295\end{array} \right.\).  
D. \(\left\{ \begin{array}{l}x + y = 295\\130x + 50y = 3,5\end{array} \right.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Gọi \(x\) và \(y\) lần lượt là số kilogam thịt lợn và cá chép mà bác Ngọc đã mua.

Do bác Ngọc chỉ mua \(3,5\,\,{\rm{kg}}\) hai loại thực phẩm trên.

Ta có phương trình: \(x + y = 3,5\).

Giá tiền thịt lợn là \(130\) nghìn đồng/kg, giá tiền cá chép là \(50\) nghìn đồng/kg.

Bác Ngọc đã chi \(295\) nghìn để mua \(3,5\,\,{\rm{kg}}\) hai loại thực phẩm trên.

Ta có phương trình: \(130x + 50y = 295\).

Vậy ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 3,5\\130x + 50y = 295\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\3x - 2y = 0\end{array} \right.\)ta được \(\left\{ \begin{array}{l}x =  - 2\\y =  - 3\end{array} \right.\) .

Vậy \({x^2} + 2xy + {y^2} = {\left( {x + y} \right)^2} = {\left( { - 2 - 3} \right)^2} = 25\).

Đáp án: 25.

Lời giải

Gọi \[x{\rm{\;(m)}},\,\,y{\rm{\;(m)}}\]lần lượt là chiều dài, chiều rộng của mảnh đất hình chữ nhật  \[\left( {x > y > 0,\,\,x > 1} \right).\]

Vì chu vi của mảnh đất là \[56{\rm{\;m}}\] nên ta có phương trình \[2\left( {x + y} \right) = 56\] hay \[x + y = 28\].    (1)

Diện tích của mảnh đất ban đầu là \[xy{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Chiều dài mảnh đất sau khi tăng là \[x - 1{\rm{\;(m)}}\];

Chiều rộng mảnh đất sau khi giảm là \[y + 2{\rm{\;(m)}}{\rm{.}}\]

Khi đó diện tích mảnh đất tăng thêm \[18{\rm{\;}}{{\rm{m}}^2}\] nên ta có phương trình

\[\left( {x - 1} \right)\left( {y + 2} \right) = xy + 18\] hay \[xy + 2x - y - 2 = xy + 18\], tức là, \[2x - y = 20\]. (2)

Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 28\\2x - y = 20\end{array} \right.\]

Từ phương trình thứ hai của hệ, ta có \[y = 2x - 20\]. Thế vào phương trình thứ nhất của hệ, ta được:

\[x + 2x - 20 = 28\] hay \[3x = 48\], tức là, \[x = 16\] (TMĐK).

Từ đó, ta có \[y = 2 \cdot 16 - 20 = 12\] (TMĐK).

Do đó, chiều dài và chiều rộng của mảnh đất đó lần lượt là \[16{\rm{\;m}}\] và \[12{\rm{\;m}}\].

Vậy diện tích mảnh đất đó bằng \[16 \cdot 12 = 192{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Đáp án: 192.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[x =  - 7.\]  

B. \[x = 7.\]   
C. \[x =  - \frac{7}{3}.\] 
D. \[x =  - \frac{3}{7}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP