Câu hỏi:

09/10/2025 11 Lưu

Trong không gian \(Oxyz\), cho bốn điểm \(A\left( {2;0;0} \right),\,\,B\left( {0;2;0} \right),\,\,C\left( {0;0;2} \right)\) và \(D\left( {2;2;2} \right)\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(CD\). Tọa độ trung điểm \(I\) của đoạn thẳng \(MN\) là:

\(I\left( {1;1;0} \right)\).

\(I\left( {\frac{1}{2};\frac{1}{2};1} \right)\).

\(I\left( {1;1;1} \right)\).

\(I\left( {1; - 1;2} \right)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: C

Vì \(I\left( {x;y;z} \right)\) là trung điểm \(MN\) nên ta có: \[2\overrightarrow {IM} + 2\overrightarrow {IN} = \overrightarrow 0 \Leftrightarrow \overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} = \overrightarrow 0 \].

Suy ra \(\left\{ \begin{array}{l}x = \frac{{2 + 0 + 0 + 2}}{4}\\y = \frac{{0 + 2 + 0 + 2}}{4}\\z = \frac{{0 + 0 + 2 + 2}}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\\z = 1\end{array} \right.\). Vậy \(I\left( {1;1;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].

c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].

d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].

Lời giải

Đặt \(\left| {\overrightarrow {{F_1}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_2}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_3}} } \right| = 4\) N.

Theo giả thiết ta có

\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)

nên \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 5{\rm{,}}1\) N.

Đáp án: 5,1.

\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)
 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP