Câu hỏi:

09/10/2025 80 Lưu

Trong không gian với hệ toạ độ \(Oxyz\), cho hai điểm \(A\left( {1\,;2\,;3} \right),\,\,B\left( { - 2\,; - 4\,;9} \right)\). Điểm \(M\) thuộc đoạn \(AB\) sao cho \(MA = 2MB\). Độ dài đoạn thẳng \(OM\) là

\(5\).

\(3\).

\(\sqrt {54} \).

\(\sqrt {17} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: C

Đặt \(M\left( {x\,;y\,;z} \right)\), khi đó: \(\overrightarrow {MA} = \left( {1 - x\,;2 - y\,;3 - z} \right)\) và \(\overrightarrow {MB} = \left( { - 2 - x\,; - 4 - y\,;9 - z} \right)\).

Ta có: \(MA = 2MB \Rightarrow \overrightarrow {MA} = - 2\overrightarrow {MB} \Leftrightarrow \left\{ \begin{array}{l}1 - x = - 2\left( { - 2 - x} \right)\\2 - y = - 2\left( { - 4 - y} \right)\\3 - z = - 2\left( {9 - z} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = - 2\\z = 7\end{array} \right. \Rightarrow M\left( { - 1\,; - 2\,;7} \right)\).

Khi đó: \(\overrightarrow {OM} = \left( { - 1\,; - 2\,;7} \right)\). Vậy \[OM = \sqrt {54} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Ta có \(\vec u \bot \vec v \Rightarrow \vec u.\vec v = 0 \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right)\left( {\overrightarrow a + \overrightarrow b } \right) = 0 \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} - \frac{{13}}{5}\overrightarrow a \overrightarrow b - 3{\overrightarrow b ^2} = 0\).

Suy ra \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\vec a.\overrightarrow b }}{{\left| {\vec a} \right|.\left| {\overrightarrow b } \right|}} = - 1 \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ \).

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].

c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].

d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + \overrightarrow b - 2\overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + 2\overrightarrow b - \overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a - 2\overrightarrow b + \overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + 2\overrightarrow b - \overrightarrow c } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP