Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \[ABCD,\] mặt phẳng \((ABCD)\) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc \(E\) của chiếc cần cẩu sao cho các đoạn dây cáp \(EA,EB,EC,ED\) có độ dài bằng nhau và cùng tạo với mặt phẳng \((ABCD)\) một góc bằng \(60^\circ \). Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng. Biết rằng các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \) đều có cường độ là \(4700\;{\rm{N}}\) và trọng lượng của khung sắt là \(3000\;{\rm{N}}\).

(a)\(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {{F_3}} + \overrightarrow {{F_4}} \).
(b)\(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = \overrightarrow {{F_2}} + \overrightarrow {{F_4}} \).
(c)\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_3}} } \right| = 8141\;{\rm{N}}\) (làm tròn đến hàng đơn vị).
(d) Trọng lượng của chiếc xe ô tô là \(16282\;{\rm{N}}\) (làm tròn đến hàng đơn vị).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:
Lấy các điểm \(M,N,P,Q\)lần lượt trên các tia \(EA,EB,EC,ED\) sao cho
\(\overrightarrow {EM} = \overrightarrow {{F_1}} ,\overrightarrow {EN} = \overrightarrow {{F_2}} ,\overrightarrow {EP} = \overrightarrow {{F_3}} ,\overrightarrow {EQ} = \overrightarrow {{F_4}} {\rm{. }}\)
Do các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \) đều có cường độ là \(4700\;{\rm{N}}\) nên \(EM = EN = EP = EQ = 4700\).

a) Sai. Ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {EM} + \overrightarrow {EN} = 2\overrightarrow {EH} \), với \(H\) là trung điểm của \(MN\).
\(\overrightarrow {{F_3}} + \overrightarrow {{F_4}} = \overrightarrow {EP} + \overrightarrow {EQ} = 2\overrightarrow {EK} \), với \(K\) là trung điểm của \[PQ\] suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \ne \overrightarrow {{F_3}} + \overrightarrow {{F_4}} \).
b) Đúng. Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = \overrightarrow {EM} + \overrightarrow {EP} = 2\overrightarrow {EO} \), với \(O\) là trung điểm của \(MP\).
\(\overrightarrow {{F_2}} + \overrightarrow {{F_4}} = \overrightarrow {EN} + \overrightarrow {EQ} = 2\overrightarrow {EO} ,\) với \(O\) là trung điểm của \[MP\] suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = \overrightarrow {{F_2}} + \overrightarrow {{F_4}} \).
c) Đúng.\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_3}} } \right| = |2\overrightarrow {EO} | = 2EO\). Theo giả thiết, góc giữa \(EA\)với \(\left( {ABCD} \right)\) bằng \(60^\circ \) nên góc giữa \(EM\)với \(\left( {MNPQ} \right)\) cũng bằng \(60^\circ \) hay \(\widehat {SMO} = 60^\circ \).
Xét \(\Delta EMO\) có \(EM = 4700,\widehat {\,SMO} = 60^\circ \) suy ra \(EO = EM\sin 60^\circ = 2350\sqrt 3 \).
d) Đúng. Từ đây ta tính được \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_3}} } \right| = 2EO = 8141\;{\rm{N}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].
b) Đúng. Ta có:
\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].
c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].
d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]
\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải
Chọn hệ trục tọa độ \(Oxyz\), với gốc đặt tại điểm xuất phát của hai chiếc khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất, trục \(Ox\) hướng về phía Bắc, trục \(Oy\) hướng về phía Tây, trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét (xem hình vẽ).

Chiếc khinh khí cầu thứ nhất có tọa độ \(\left( { - 100; - 80;1} \right)\).
Chiếc khinh khí cầu thứ hai có tọa độ \(\left( {70;60;0,8} \right)\).
Khoảng cách của chiếc khinh khí cầu thứ nhất với vị trí tại điểm xuất phát của nó là:
\[\sqrt {{{\left( { - 100} \right)}^2} + {{\left( { - 80} \right)}^2} + {1^2}} \approx 128\,\,\left( {{\rm{km}}} \right)\].
Khoảng cách giữa chiếc khinh khí cầu thứ nhất và chiếc khinh khí cầu thứ hai là:
\[\sqrt {{{\left( { - 100 - 70} \right)}^2} + {{\left( { - 80 - 60} \right)}^2} + {{\left( {1 - 0,8} \right)}^2}} \approx 220\,\,\left( {{\rm{km}}} \right)\].
Đáp án: 220.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + \overrightarrow b - 2\overrightarrow c } \right)\].
\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + 2\overrightarrow b - \overrightarrow c } \right)\].
\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a - 2\overrightarrow b + \overrightarrow c } \right)\].
\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + 2\overrightarrow b - \overrightarrow c } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


