Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật \[ABCD,\] mặt phẳng \((ABCD)\) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc \(E\) của chiếc cần cẩu sao cho các đoạn dây cáp \(EA,EB,EC,ED\) có độ dài bằng nhau và cùng tạo với mặt phẳng \((ABCD)\) một góc bằng \(60^\circ \). Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng. Biết rằng các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \) đều có cường độ là \(4700\;{\rm{N}}\) và trọng lượng của khung sắt là \(3000\;{\rm{N}}\).
(a)\(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {{F_3}} + \overrightarrow {{F_4}} \).
(b)\(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = \overrightarrow {{F_2}} + \overrightarrow {{F_4}} \).
(c)\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_3}} } \right| = 8141\;{\rm{N}}\) (làm tròn đến hàng đơn vị).
(d) Trọng lượng của chiếc xe ô tô là \(16282\;{\rm{N}}\) (làm tròn đến hàng đơn vị).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:

Lấy các điểm \(M,N,P,Q\)lần lượt trên các tia \(EA,EB,EC,ED\) sao cho
\(\overrightarrow {EM} = \overrightarrow {{F_1}} ,\overrightarrow {EN} = \overrightarrow {{F_2}} ,\overrightarrow {EP} = \overrightarrow {{F_3}} ,\overrightarrow {EQ} = \overrightarrow {{F_4}} {\rm{. }}\)
Do các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\overrightarrow {{F_4}} \) đều có cường độ là \(4700\;{\rm{N}}\) nên \(EM = EN = EP = EQ = 4700\).
a) Sai. Ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {EM} + \overrightarrow {EN} = 2\overrightarrow {EH} \), với \(H\) là trung điểm của \(MN\).
\(\overrightarrow {{F_3}} + \overrightarrow {{F_4}} = \overrightarrow {EP} + \overrightarrow {EQ} = 2\overrightarrow {EK} \), với \(K\) là trung điểm của \[PQ\] suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \ne \overrightarrow {{F_3}} + \overrightarrow {{F_4}} \).
b) Đúng. Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = \overrightarrow {EM} + \overrightarrow {EP} = 2\overrightarrow {EO} \), với \(O\) là trung điểm của \(MP\).
\(\overrightarrow {{F_2}} + \overrightarrow {{F_4}} = \overrightarrow {EN} + \overrightarrow {EQ} = 2\overrightarrow {EO} ,\) với \(O\) là trung điểm của \[MP\] suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_3}} = \overrightarrow {{F_2}} + \overrightarrow {{F_4}} \).
c) Đúng.\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_3}} } \right| = |2\overrightarrow {EO} | = 2EO\). Theo giả thiết, góc giữa \(EA\)với \(\left( {ABCD} \right)\) bằng \(60^\circ \) nên góc giữa \(EM\)với \(\left( {MNPQ} \right)\) cũng bằng \(60^\circ \) hay \(\widehat {SMO} = 60^\circ \).
Xét \(\Delta EMO\) có \(EM = 4700,\widehat {\,SMO} = 60^\circ \) suy ra \(EO = EM\sin 60^\circ = 2350\sqrt 3 \).
d) Đúng. Từ đây ta tính được \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_3}} } \right| = 2EO = 8141\;{\rm{N}}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].
b) Đúng. Ta có:
\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].
c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].
d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]
\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải
Đặt \(\left| {\overrightarrow {{F_1}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_2}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_3}} } \right| = 4\) N.
Theo giả thiết ta có
\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)
nên \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 5{\rm{,}}1\) N.
Đáp án: 5,1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.