Một phòng học có thiết kế dạng hình hộp chữ nhật \(ABCD.A'B'C'D'\) với \(AB = 6{\rm{\;m}},AD = 7{\rm{\;m}},\)\(AA' = 3,5{\rm{\;m}}\). Một bóng đèn được treo ở vị trí chính giữa trần nhà của phòng học và cách trần nhà \(0,5{\rm{\;m}}\). Chọn hệ trục tọa độ Oxyz sao cho gốc \(O\) trùng với điểm \(A\), các điểm \(B,D,A'\) lần lượt nằm trên các tia \(Ox,Oy,Oz\).
(a) Điểm \(D\) có toạ độ là \(\left( {0;7;0} \right)\).
(b) Các điểm C, D có tung độ bằng nhau.
(c) Vectơ \(\overrightarrow {C'D'} \) có tọa độ \(\left( {6;0;0} \right)\)
(d) Bóng đèn nằm tại vị trí có tọa độ \(\left( {3;3,5;3,5} \right)\).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:

a) Đúng. Có điểm A trùng với gốc tọa độ \({\rm{O}},D \in Oy \Rightarrow D\left( {0;{y_D};0} \right)\).
Mà \(AD = 7\), suy ra \({y_D} = 7\) hay \(D\left( {0;7;0} \right)\).
b) Đúng. Các điểm \(C,D\) có tung độ bằng nhau và bằng 7.
c) Sai. Ta có tọa độ điểm \(D'\left( {0;7;3,5} \right)\) và điểm \(C'\left( {6;7;3,5} \right)\).
Suy ra vectơ \(\overline {C'D'} \left( { - 6;0;0} \right)\).
d) Sai. Ta có điểm \(A'\left( {0;0;3,5} \right)\) và điểm \(C'\left( {6;7;3,5} \right)\).
Tọa độ trung điểm của \(A'{\rm{C'}}\) là \(\left( {\frac{{6 + 0}}{2};\frac{{7 + 0}}{2};\frac{{3,5 + 3,5}}{2}} \right) = \left( {3;3,5;3,5} \right)\).
Mà bóng đèn được treo cách trần nhà \(0,5{\rm{\;m}}\).
Vậy bóng đèn nằm tại vị trí có toạ độ \(\left( {3;3,5;3} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].
b) Đúng. Ta có:
\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].
c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].
d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]
\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải
Đặt \(\left| {\overrightarrow {{F_1}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_2}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_3}} } \right| = 4\) N.
Theo giả thiết ta có
\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)
nên \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 5{\rm{,}}1\) N.
Đáp án: 5,1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(5\sqrt 5 .\)
\(\sqrt {124} .\)
8.
124.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.