Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát \(2{\rm{\;km}}\) về phía nam và \(1{\rm{\;km}}\) về phía đông, đồng thời cách mặt đất \(0,5{\rm{\;km}}\). Chiếc thứ hai nằm cách điểm xuất phát \(1{\rm{\;km}}\) về phía bắc và \(1,5{\rm{\;km}}\) về phía tây, đồng thời cách mặt đất 0,8 \({\rm{km}}\).Chọn hệ trục \(Oxyz\) với gốc \(O\) đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \(Oy\) hướng về phía đông và trục \(Oz\) hướng thẳng đứng lên trời (Hình bên dưới), đơn vị đo lấy theo kilomet.

(a) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ nhất là \(\left( {2;1;0,5} \right)\).
(b) Với hệ tọa độ đã chọn, toạ độ khinh khí cầu thứ hai là \(\left( { - 1,5; - 1;0,8} \right)\).
(c) Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất bằng \(\sqrt {21} {\rm{\;km}}\).
(d) Khoảng cách hai chiếc khinh khí cầu là \(3,92{\rm{\;km}}\) (Kết quả làm tròn đến hàng phần trăm).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng. Chiếc khinh khí cầu thứ nhất có tọa độ là \(\left( {2;1;0,5} \right)\).
b) Sai. Chiếc khinh khí cầu thứ hai có tọa độ là \(\left( { - 1; - 1,5;0,8} \right)\).
c) Sai. Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất bằng\(\sqrt {{2^2} + {1^2} + 0,{5^2}} = \frac{{\sqrt {21} }}{2}\,\,\left( {{\rm{km}}} \right)\).
d) Đúng. Khoảng cách hai chiếc khinh khí cầu là
\(\sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {1,5 - 1} \right)}^2} + {{\left( {0,8 - 0,5} \right)}^2}} = \sqrt {15,34} \approx 3,92\left( {{\rm{km}}} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].
b) Đúng. Ta có:
\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].
c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].
d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]
\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải

a) Ta có: \(\left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right) = \widehat {CAB} = 45^\circ \); \(\left( {\overrightarrow {AC} ,\,\overrightarrow {B'D'} } \right) = \left( {\overrightarrow {AC} ,\,\overrightarrow {BD'} } \right) = 90^\circ \)
\[\left( {\overrightarrow {AC} ,\,\overrightarrow {CD} } \right) = \left( {\overrightarrow {CE} ,\,\overrightarrow {CD} } \right) = 180^\circ - 45^\circ = 135^\circ \] (\(E\) là điểm đối xứng của \(A\) qua \(C\))
\(\overrightarrow {AD'} = \overrightarrow {BC'} \Rightarrow \left( {\overrightarrow {AD'} ,\overrightarrow {BD} } \right) = \left( {\overrightarrow {BC'} ,\overrightarrow {BD} } \right) = \widehat {C'BD}\) mà tam giác \(C'BD\) là tam giác đều nên khi đó ta có \(\widehat {C'BD} = 60^\circ \).
b) Ta có \(AC = BD = B'D' = 5\sqrt 2 \) suy ra:
.
Do \(AC\) vuông góc với \(B'D'\) nên \(\overrightarrow {AC} .\overrightarrow {B'D'} = 0\).
.
c) Ta cần chứng minh \(\overrightarrow {AC'} .\overrightarrow {BD} = 0\)
Ta có: \(\overrightarrow {AC'} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \) và \(\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \) nên \(\overrightarrow {AC'} .\overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right).\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)
\[ = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {A{B^2}} + \overrightarrow {A{D^2}} - \overrightarrow {AD} .\overrightarrow {AB} + \overrightarrow {AA'} .\overrightarrow {AD} - \overrightarrow {AA'} .\overrightarrow {AB} = {5^2} - {5^2} = 0\].
Suy ra \(\overrightarrow {AC'} \) vuông góc với \(\overrightarrow {BD} \) (điều phải chứng minh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(5\sqrt 5 .\)
\(\sqrt {124} .\)
8.
124.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


