Câu hỏi:

09/10/2025 702 Lưu

Trong không gian, xét hệ tọa độ \(Oxyz\) có gốc \(O\) trùng với vị trí một giàn khoan trên biển, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt biển (được coi là mặt phẳng) với tia \(Ox\) hướng về phía nam, tia \(Oy\) hướng về phía đông và tia \(Oz\) hướng thẳng đứng lên trời (tham khảo hình vẽ). Đơn vị đo trong không gian \(Oxyz\) lấy theo kilômét. Một chiếc radar đặt tại \(O\) có phạm vi theo dõi là 30 km. Một chiếc tàu thám hiểm tại vị trí \(A\) ở độ sâu 10 km so với mặt nước biển, cách \(O\;25\;{\rm{km}}\) về phía nam và 15 km về phía tây. Một tàu đánh cá tại vị trí \(B\left( { - 20;15;0} \right)\).

index_html_313bd1d14f574718.png

(a) Khoảng cách từ chiếc tàu thám hiểm đến radar bằng 25 km.

(b) Radar không phát hiện được tàu thám hiểm đặt tại vị trí \(A\).

(c) Radar phát hiện ra tàu đánh cá tại vị trí \(B\).

(d) Một chiếc tàu của cảnh sát biển đang tuần tra di chuyển đến vị trí cách \(O\)\(\;15\;{\rm{km}}\) về phía nam.

Để radar phát hiện ra thì tàu cảnh sát biển cần di chuyển về phía đông cách \(O\) tối đa \(15\sqrt 3 \;{\rm{km}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai.Tàu thám hiểm ở vị trí \(A\left( {25; - 15; - 10} \right)\).

Khoảng cách từ tàu thám hiểm đến radar là \(OA = \sqrt {{{25}^2} + {{15}^2} + {{10}^2}} = 5\sqrt {38} \approx 30,8\;{\rm{km}}\).

b) Đúng. Radar đặt tại \(O\) có phạm vi theo dõi là 30 km, mà khoảng cách từ tàu thám hiểm đến radar là 30,8 \( > 30\) nên radar không phát hiện được tàu thám hiểm đặt tại vị trí \(A\).

c) Đúng. Khoảng cách từ tàu đánh cá đến radar là

\(OB = \sqrt {{{20}^2} + {{15}^2}} = 25\;{\rm{km}} < 30\;{\rm{km}}\).

Vậy radar phát hiện ra tàu đánh cá tại vị trí \(B\).

d) Đúng. Giả sử chiếc tàu của cảnh sát biển ở vị trí \(C\left( {15;y;0} \right)\).

Khoảng cách từ tàu của cảnh sát biển đến radar là \(OC = \sqrt {{{15}^2} + {y^2}} \).

Để radar phát hiện ra thì tàu cảnh sát biển thì: \(OC < 30 \Leftrightarrow {15^2} + {y^2} < {30^2} \Leftrightarrow - 15\sqrt 3 < y < 15\sqrt 3 \).

Vậy để radar phát hiện ra thì tàu cảnh sát biển cần di chuyển về phía đông cách \(O\) tối đa \(15\sqrt 3 \;{\rm{km}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

index_html_34eeeeaf9bb3e5a5.png

a) Sai. Kẻ \(TM \bot Oy\), \(CN \bot Oy\).

Vì \(T\) là hình chiếu của \(Q\) lên \(\left( {Oxy} \right)\) nên

\(\left\{ \begin{array}{l}{x_Q} = {x_T} = - OD = - \left( {AD - OA} \right) = - 6\\{y_Q} = {y_T} = OH = \frac{{AB}}{2} = 3\end{array} \right.\).

\({z_Q} = QT = 7\)

Suy ra \(Q\left( { - 6;\,3;\,7} \right)\).

b) Đúng. Vì \(C \in \left( {Oxy} \right)\) nên \({z_C} = 0\).

Ta có \(\left\{ \begin{array}{l}{x_C} = - OD = - 6\\{y_C} = ON = AB = 6\end{array} \right.\).Suy ra \(C\left( { - 6;\,6;\,0} \right)\).Vậy \(\overrightarrow {OC} = \left( { - 6;\,6;\,0} \right)\).

c) Đúng Gọi \(L\) là trung điểm của \(FG\).

Ta có: \({z_K} = OK = AE = 5\).

Suy ra \(K\left( {0;\,0;\,5} \right)\).

\( \Rightarrow OK = 5\).

\(B\), \(C\) lần lượt là hình chiếu của \(F\), \(G\) lên \(\left( {Oxy} \right)\).

Suy ra \(F\left( {2;\,6;\,5} \right)\), \(G\left( { - 6;\,6;\,5} \right)\).

Mà \(L\) là trung điểm của \(FG\) nên \(L\left( { - 2;\,6;\,5} \right)\)\( \Rightarrow KL = 2\sqrt {10} \).

Vậy độ dài đoạn cáp tối thiểu từ \(O\) đến \(K\)sau đó nối thẳng đến camera là

\(OK + KL = 5 + 2\sqrt {10} \) (m)

d) Sai.\(FG = \sqrt {{{\left( { - 6 - 2} \right)}^2} + {{\left( {6 - 6} \right)}^2} + {{\left( {5 - 5} \right)}^2}} = 8\) (m) .

\(GQ = \sqrt {{{\left( { - 6 + 6} \right)}^2} + {{\left( {3 - 6} \right)}^2} + {{\left( {7 - 5} \right)}^2}} = \sqrt {13} \) (m).

Suy ra \({S_{FGQP}} = FG \cdot GQ = 8\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Diện tích lợp tôn mái nhà là \(2{S_{FGQP}} = 16\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Số tiền cần bỏ ra để mua tôn lợp mái nhà là

\(16\sqrt {13} \cdot 130\,000 \approx 7\,500\,000\) (đồng).

Lời giải

Đáp án đúng: B

Ta có \(\vec u \bot \vec v \Rightarrow \vec u.\vec v = 0 \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right)\left( {\overrightarrow a + \overrightarrow b } \right) = 0 \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} - \frac{{13}}{5}\overrightarrow a \overrightarrow b - 3{\overrightarrow b ^2} = 0\).

Suy ra \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\vec a.\overrightarrow b }}{{\left| {\vec a} \right|.\left| {\overrightarrow b } \right|}} = - 1 \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ \).