Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc \(100^\circ \) và có độ lớn lần lượt là \(25\;\)N và \(12\;\)N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn \(4\;\)N. Tính độ lớn của hợp lực của ba lực trên (làm tròn đến hàng phần chục theo đơn vị Newton).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:

Đáp án:
Đặt \(\left| {\overrightarrow {{F_1}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_2}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_3}} } \right| = 4\) N.
Theo giả thiết ta có
\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)
nên \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 5{\rm{,}}1\) N.
Đáp án: 5,1.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].
b) Đúng. Ta có:
\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].
c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].
d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]
\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải
a) Sai. Kẻ \(TM \bot Oy\), \(CN \bot Oy\).
Vì \(T\) là hình chiếu của \(Q\) lên \(\left( {Oxy} \right)\) nên
\(\left\{ \begin{array}{l}{x_Q} = {x_T} = - OD = - \left( {AD - OA} \right) = - 6\\{y_Q} = {y_T} = OH = \frac{{AB}}{2} = 3\end{array} \right.\).
\({z_Q} = QT = 7\)
Suy ra \(Q\left( { - 6;\,3;\,7} \right)\).
b) Đúng. Vì \(C \in \left( {Oxy} \right)\) nên \({z_C} = 0\).
Ta có \(\left\{ \begin{array}{l}{x_C} = - OD = - 6\\{y_C} = ON = AB = 6\end{array} \right.\).Suy ra \(C\left( { - 6;\,6;\,0} \right)\).Vậy \(\overrightarrow {OC} = \left( { - 6;\,6;\,0} \right)\).
c) Đúng Gọi \(L\) là trung điểm của \(FG\).
Ta có: \({z_K} = OK = AE = 5\).
Suy ra \(K\left( {0;\,0;\,5} \right)\).
\( \Rightarrow OK = 5\).
\(B\), \(C\) lần lượt là hình chiếu của \(F\), \(G\) lên \(\left( {Oxy} \right)\).
Suy ra \(F\left( {2;\,6;\,5} \right)\), \(G\left( { - 6;\,6;\,5} \right)\).
Mà \(L\) là trung điểm của \(FG\) nên \(L\left( { - 2;\,6;\,5} \right)\)\( \Rightarrow KL = 2\sqrt {10} \).
Vậy độ dài đoạn cáp tối thiểu từ \(O\) đến \(K\)sau đó nối thẳng đến camera là
\(OK + KL = 5 + 2\sqrt {10} \) (m)
d) Sai.\(FG = \sqrt {{{\left( { - 6 - 2} \right)}^2} + {{\left( {6 - 6} \right)}^2} + {{\left( {5 - 5} \right)}^2}} = 8\) (m) .
\(GQ = \sqrt {{{\left( { - 6 + 6} \right)}^2} + {{\left( {3 - 6} \right)}^2} + {{\left( {7 - 5} \right)}^2}} = \sqrt {13} \) (m).
Suy ra \({S_{FGQP}} = FG \cdot GQ = 8\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Diện tích lợp tôn mái nhà là \(2{S_{FGQP}} = 16\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Số tiền cần bỏ ra để mua tôn lợp mái nhà là
\(16\sqrt {13} \cdot 130\,000 \approx 7\,500\,000\) (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.