Câu hỏi:

09/10/2025 323 Lưu

Một chiếc xe đang kéo căng sợi dây cáp \(AB\) trong công trường xây dựng, trên đó đã thiết lập hệ toạ độ \(Oxyz\) như hình vẽ dưới với độ dài đơn vị trên các trục tọa độ bằng \(1\;\,{\rm{m}}\). Tìm được tọa độ của vectơ \(\overrightarrow {AB} = \left( {a;b;c} \right)\). Khi đó tính \(a + c\) (viết kết quả dưới dạng số thập phân).

Một chiếc xe đang kéo căng sợi dây cáp  A B  trong công trường xây dựng, trên đó đã thiết lập hệ toạ độ  O x y z  như hình vẽ dưới với độ dài đơn vị trên các trục tọa độ bằng  1 m (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

−2,5

Ta có: \(\overrightarrow {OA} = 10\vec k \Rightarrow A\left( {0;0;10} \right)\) và \(OH = OB.\cos 30^\circ = \frac{{15\sqrt 3 }}{2}\); \(OK = OB.\cos \left( {90^\circ - 30^\circ } \right) = \frac{{15}}{2}\)

\[ \Rightarrow {\rm{ }}B\left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2};0} \right) \Rightarrow \overrightarrow {AB} = \left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2}; - 10} \right)\]. Vậy \(a + c = - 2,5\).

Đáp án: −2,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

index_html_34eeeeaf9bb3e5a5.png

a) Sai. Kẻ \(TM \bot Oy\), \(CN \bot Oy\).

Vì \(T\) là hình chiếu của \(Q\) lên \(\left( {Oxy} \right)\) nên

\(\left\{ \begin{array}{l}{x_Q} = {x_T} = - OD = - \left( {AD - OA} \right) = - 6\\{y_Q} = {y_T} = OH = \frac{{AB}}{2} = 3\end{array} \right.\).

\({z_Q} = QT = 7\)

Suy ra \(Q\left( { - 6;\,3;\,7} \right)\).

b) Đúng. Vì \(C \in \left( {Oxy} \right)\) nên \({z_C} = 0\).

Ta có \(\left\{ \begin{array}{l}{x_C} = - OD = - 6\\{y_C} = ON = AB = 6\end{array} \right.\).Suy ra \(C\left( { - 6;\,6;\,0} \right)\).Vậy \(\overrightarrow {OC} = \left( { - 6;\,6;\,0} \right)\).

c) Đúng Gọi \(L\) là trung điểm của \(FG\).

Ta có: \({z_K} = OK = AE = 5\).

Suy ra \(K\left( {0;\,0;\,5} \right)\).

\( \Rightarrow OK = 5\).

\(B\), \(C\) lần lượt là hình chiếu của \(F\), \(G\) lên \(\left( {Oxy} \right)\).

Suy ra \(F\left( {2;\,6;\,5} \right)\), \(G\left( { - 6;\,6;\,5} \right)\).

Mà \(L\) là trung điểm của \(FG\) nên \(L\left( { - 2;\,6;\,5} \right)\)\( \Rightarrow KL = 2\sqrt {10} \).

Vậy độ dài đoạn cáp tối thiểu từ \(O\) đến \(K\)sau đó nối thẳng đến camera là

\(OK + KL = 5 + 2\sqrt {10} \) (m)

d) Sai.\(FG = \sqrt {{{\left( { - 6 - 2} \right)}^2} + {{\left( {6 - 6} \right)}^2} + {{\left( {5 - 5} \right)}^2}} = 8\) (m) .

\(GQ = \sqrt {{{\left( { - 6 + 6} \right)}^2} + {{\left( {3 - 6} \right)}^2} + {{\left( {7 - 5} \right)}^2}} = \sqrt {13} \) (m).

Suy ra \({S_{FGQP}} = FG \cdot GQ = 8\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Diện tích lợp tôn mái nhà là \(2{S_{FGQP}} = 16\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Số tiền cần bỏ ra để mua tôn lợp mái nhà là

\(16\sqrt {13} \cdot 130\,000 \approx 7\,500\,000\) (đồng).

Lời giải

Đáp án đúng: B

Ta có \(\vec u \bot \vec v \Rightarrow \vec u.\vec v = 0 \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right)\left( {\overrightarrow a + \overrightarrow b } \right) = 0 \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} - \frac{{13}}{5}\overrightarrow a \overrightarrow b - 3{\overrightarrow b ^2} = 0\).

Suy ra \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\vec a.\overrightarrow b }}{{\left| {\vec a} \right|.\left| {\overrightarrow b } \right|}} = - 1 \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ \).