Ba chiếc máy bay không người lái cùng bay lên tại một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60 km và về phía Nam 40 km, đồng thời cách mặt đất 2 km. Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80 km và về phía Tây 50 km, đồng thời cách mặt đất 4 km. Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó (làm tròn kết quả đến hàng phần mười theo đơn vị kilomet).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Chọn hệ trục tọa độ \(Oxyz\), với gốc đặt tại điểm xuất phát của hai chiếc máy bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất, trục \(Ox\) hướng về phía Bắc, trục \(Oy\) hướng về phía Tây, trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét (xem hình vẽ).

Chiếc máy bay thứ nhất có tọa độ \(\left( { - 60; - 40;2} \right)\).
Chiếc máy bay thứ hai có tọa độ \(\left( {80;50;4} \right)\).
Do chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng nên ở vị trí trung điểm, suy ra chiếc máy bay thứ ba có tọa độ \(\left( {\frac{{ - 60 + 80}}{2};\frac{{ - 40 + 50}}{2};\frac{{2 + 4}}{2}} \right) = \left( {10;5;3} \right)\).
Khoảng cách giữa chiếc máy bay thứ nhất và chiếc máy bay thứ hai:
\[\sqrt {{{\left( { - 60 - 80} \right)}^2} + {{\left( { - 40 - 50} \right)}^2} + {{\left( {2 - 4} \right)}^2}} \approx 166,4\left( {{\rm{km}}} \right)\].
Khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó là:
\[\sqrt {{{10}^2} + {5^2} + {3^2}} \approx 11,6\left( {{\rm{km}}} \right)\].
Đáp án: 11,6.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Sai. Kẻ \(TM \bot Oy\), \(CN \bot Oy\).
Vì \(T\) là hình chiếu của \(Q\) lên \(\left( {Oxy} \right)\) nên
\(\left\{ \begin{array}{l}{x_Q} = {x_T} = - OD = - \left( {AD - OA} \right) = - 6\\{y_Q} = {y_T} = OH = \frac{{AB}}{2} = 3\end{array} \right.\).
\({z_Q} = QT = 7\)
Suy ra \(Q\left( { - 6;\,3;\,7} \right)\).
b) Đúng. Vì \(C \in \left( {Oxy} \right)\) nên \({z_C} = 0\).
Ta có \(\left\{ \begin{array}{l}{x_C} = - OD = - 6\\{y_C} = ON = AB = 6\end{array} \right.\).Suy ra \(C\left( { - 6;\,6;\,0} \right)\).Vậy \(\overrightarrow {OC} = \left( { - 6;\,6;\,0} \right)\).
c) Đúng Gọi \(L\) là trung điểm của \(FG\).
Ta có: \({z_K} = OK = AE = 5\).
Suy ra \(K\left( {0;\,0;\,5} \right)\).
\( \Rightarrow OK = 5\).
\(B\), \(C\) lần lượt là hình chiếu của \(F\), \(G\) lên \(\left( {Oxy} \right)\).
Suy ra \(F\left( {2;\,6;\,5} \right)\), \(G\left( { - 6;\,6;\,5} \right)\).
Mà \(L\) là trung điểm của \(FG\) nên \(L\left( { - 2;\,6;\,5} \right)\)\( \Rightarrow KL = 2\sqrt {10} \).
Vậy độ dài đoạn cáp tối thiểu từ \(O\) đến \(K\)sau đó nối thẳng đến camera là
\(OK + KL = 5 + 2\sqrt {10} \) (m)
d) Sai.\(FG = \sqrt {{{\left( { - 6 - 2} \right)}^2} + {{\left( {6 - 6} \right)}^2} + {{\left( {5 - 5} \right)}^2}} = 8\) (m) .
\(GQ = \sqrt {{{\left( { - 6 + 6} \right)}^2} + {{\left( {3 - 6} \right)}^2} + {{\left( {7 - 5} \right)}^2}} = \sqrt {13} \) (m).
Suy ra \({S_{FGQP}} = FG \cdot GQ = 8\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Diện tích lợp tôn mái nhà là \(2{S_{FGQP}} = 16\sqrt {13} \)\(\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Số tiền cần bỏ ra để mua tôn lợp mái nhà là
\(16\sqrt {13} \cdot 130\,000 \approx 7\,500\,000\) (đồng).
Câu 2
\(\alpha = 90^\circ \).
\(\alpha = 180^\circ \).
\(\alpha = 60^\circ \).
\(\alpha = 45^\circ \).
Lời giải
Đáp án đúng: B
Ta có \(\vec u \bot \vec v \Rightarrow \vec u.\vec v = 0 \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right)\left( {\overrightarrow a + \overrightarrow b } \right) = 0 \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} - \frac{{13}}{5}\overrightarrow a \overrightarrow b - 3{\overrightarrow b ^2} = 0\).
Suy ra \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\vec a.\overrightarrow b }}{{\left| {\vec a} \right|.\left| {\overrightarrow b } \right|}} = - 1 \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




