Câu hỏi:

09/10/2025 341 Lưu

Ba lực \[\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \] cùng tác dụng vào một vật có phương đôi một vuông góc với nhau và có độ lớn lần lượt là \(2\)N, \(3\)N và \(4\)N.

Ba lực  −→ F 1 , −→ F 2 , −→ F 3  cùng tác dụng vào một vật có phương đôi một vuông góc với nhau và có độ lớn lần lượt là  2 N,  3 N và  4 N. (ảnh 1)

(a) Tính độ lớn hợp hai lực \(\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \).

(b) Tính độ lớn hợp lực của ba lực đã cho.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Ba lực  −→ F 1 , −→ F 2 , −→ F 3  cùng tác dụng vào một vật có phương đôi một vuông góc với nhau và có độ lớn lần lượt là  2 N,  3 N và  4 N. (ảnh 2)

a) Gọi \(O\) là vị trí trên vật mà ba lực cùng tác động vào. Gọi \(A,\,\,B,\,\,C\) là các điểm sao cho \(\overrightarrow {{F_1}} = \overrightarrow {OA} \)\[\overrightarrow {{F_2}} = \overrightarrow {OB} \,,\,\,\overrightarrow {{F_3}} = \overrightarrow {OC} \]. Khi đó \[\left| {\overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = OE = \sqrt {{3^2} + {4^2}} = 5\]N.

b) Dựng các hình chữ nhật \(OBEC\) và \(OEFA\) thì ta có \(\left\{ \begin{array}{l}\overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OE} \\\overrightarrow {OA} + \overrightarrow {OE} = \overrightarrow {OF} \end{array} \right.\).

Do đó \[\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {OE} = \overrightarrow {OF} \]

Vậy độ lớn hợp lực của cả ba lực là:

\(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = \overrightarrow {OF} = \sqrt {O{A^2} + O{E^2}} = \sqrt {O{A^2} + O{B^2} + O{C^2}} = \sqrt {{2^2} + {3^2} + {4^2}} = \sqrt {29} \)N.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng: B

Ta có \(\vec u \bot \vec v \Rightarrow \vec u.\vec v = 0 \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right)\left( {\overrightarrow a + \overrightarrow b } \right) = 0 \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} - \frac{{13}}{5}\overrightarrow a \overrightarrow b - 3{\overrightarrow b ^2} = 0\).

Suy ra \(cos\left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\vec a.\overrightarrow b }}{{\left| {\vec a} \right|.\left| {\overrightarrow b } \right|}} = - 1 \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 180^\circ \).

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].

c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].

d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + \overrightarrow b - 2\overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + 2\overrightarrow b - \overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a - 2\overrightarrow b + \overrightarrow c } \right)\].

\[\overrightarrow {DM} = \frac{1}{2}\left( {\overrightarrow a + 2\overrightarrow b - \overrightarrow c } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP