Câu hỏi:

09/10/2025 11 Lưu

Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dàilà \(8\)m, chiều rộng là \(6\)m và chiều cao là \(3\)m. Một chiếc đènđược treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ \(Oxyz\)có gốc \(O\)trùng với một góc phòng và mặt phẳng \[\left( {Oxy} \right)\] trùng với mặt sàn, đơn vị đo được lấy theo mét (Hình minh họa dưới đây). Hãy tìm toạ độ của điểm treo đèn.

Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dàilà  8 m, chiều rộng là  6 m và chiều cao là  3 m. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi toạ độ các điểm \(B\left( {3\,;\,0\,;\,0} \right)\,;\,C\left( {3\,;\,6\,;\,0} \right)\,;\,D\left( {0\,;\,6\,;\,0} \right)\) như hình vẽ dưới đây:

index_html_1eba86469f360f43.png

Gọi \(N\) là trung điểm của \(OC\), \(N'\) là hình chiếu của \(N\) lên mặt phẳng trần nhà suy ra \(N'\) là điểm treo đèn.

Khi đó \(N\left( {\frac{3}{2}\,;\,3\,;\,0} \right) \Rightarrow N'\left( {\frac{3}{2}\,;\,3\,;\,3} \right)\).

Vậy toạ độ của điểm treo đèn là \(\left( {\frac{3}{2}\,;\,3\,;\,3} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].

b) Đúng. Ta có:

\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].

c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].

d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]

\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].

Lời giải

Đặt \(\left| {\overrightarrow {{F_1}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_2}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_3}} } \right| = 4\) N.

Theo giả thiết ta có

\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)

nên \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 5{\rm{,}}1\) N.

Đáp án: 5,1.

\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)
 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP