Cho hình lập phương \[ABCD.EFGH\]. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {EG} \)?
\[90^\circ \].
\[60^\circ \].
\[45^\circ \].
\[120^\circ \].
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng: C

Ta có: \(EG{\rm{//}}AC\) (do \(ACGE\) là hình chữ nhật)\[ \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {EG} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 45^\circ \].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Tọa độ điểm \(A\) là \(\left( {2;0;0} \right)\).
b) Sai. Ta có \[OD = AD - OA = 8 - 2 = 6\]m.
Tọa độ điểm \[C\left( { - 6;\,6;0} \right)\].
Vì vậy \[\overrightarrow {AC} = \left( { - 8;6;0} \right)\].
c) Sai.Gọi \[M\] là trung điểm của \[HG\] nên \[QM = 7 - 5 = 2\]m, \[MG = \frac{{HG}}{2} = \frac{{AB}}{2} = 3\]m.
Ta có \[QG = \sqrt {Q{M^2} + M{G^2}} = \sqrt {{2^2} + {3^2}} = \sqrt {13} \]m.
Diện tích cần lợp là \[S = 2{S_{PQGF}} = 2.8.\sqrt {13} = 16\sqrt {13} \]m.
Số tiền cần phải trả là \[S.22.11\,000 \approx 13\,961\,000\] đồng.
d) Đúng. Gọi \[J\] là trung điểm của \[BC\] nên \[J\left( { - 2;6;0} \right)\].
Suy ra \[I\] là trung điểm của \[FG\] nên \[I\left( { - 2;6;5} \right)\].
Ta có \[KI = \sqrt {{{\left( { - 2} \right)}^2} + {6^2} + {0^2}} = 2\sqrt {10} \]m.
Vì vậy \[{d_{\min }} = OK + KI = 5 + 2\sqrt {10} \].
Lời giải
a) Sai. Máy bay đang di chuyển từ điểm \[M\left( {500;\,200;\,10} \right)\] đến điểm \[N\left( {800;\,300;\,10} \right)\]. Hoành độ \[x\] và tung \[y\] tăng lên, cao độ \[z\] không đổi. Máy bay đang di chuyển ra xa vị trí đặt ra đa.
b) Đúng. Ta có \[\overrightarrow {MN} \left( {300;\,100;\,0} \right)\] suy ra \(MN = \sqrt {{{300}^2} + {{100}^2} + {0^2}} = 100\sqrt {10} \,\,{\rm{km}}\).
c) Sai. 20 phút \( = \frac{1}{3}\) giờ.
Tốc độ của máy bay khi di chuyển từ \[M\] đến \[N\] là \[\frac{{100\sqrt {10} }}{{\frac{1}{3}}} = 300\sqrt {10} \,\,{\rm{km/h}}\].
d) Sai.

Trong 20 phút, máy bay di chuyển từ điểm \[M\left( {500;\,200;\,10} \right)\] đến điểm \[N\left( {800;\,300;\,10} \right)\].
Nếu giữ nguyên vận tốc và hướng bay thì sau 4 phút tiếp theo máy bay di chuyển đến vị trí điểm \(Q\left( {a;\,b;\,c} \right)\) sao cho \(\overrightarrow {NQ} = \frac{1}{5}\overrightarrow {MN} \).
Suy ra \(\left\{ \begin{array}{l}a - 800 = \frac{1}{5}.300\\b - 300 = \frac{1}{5}.100\\c - 10 = \frac{1}{5}.0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 860\\b = 320\\c = 10\end{array} \right. \Rightarrow Q\left( {860;\,320;\,10} \right)\). Vậy \[a + b + c = 1190\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(\alpha = 180^\circ \).
\(\alpha = 0^\circ \).
\(\alpha = 90^\circ \).
\(\alpha = 45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


