Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình \(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\).
a) Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right)\).
c) Phương trình đã cho có ba nghiệm.
d) Tất cả các nghiệm của phương trình đã cho đều có giá trị nguyên dương.
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình \(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\).
a) Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right)\).
c) Phương trình đã cho có ba nghiệm.
d) Tất cả các nghiệm của phương trình đã cho đều có giá trị nguyên dương.
Quảng cáo
Trả lời:
Điều kiện xác định: \(x \ne - 2\)\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)
Giải phương trình:
\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)
\(\frac{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} + \frac{{{x^2} - 2x + 4}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} = \frac{{12}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}\)
\(\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right) + {x^2} - 2x + 4 = 12\)
\({x^3} + 8 + {x^2} - 2x + 4 = 12\)
\({x^3} + {x^2} - 2x = 0\)
\(x\left( {{x^2} + x - 2} \right) = 0\)
\(x\left( {{x^2} - x + 2x - 2} \right) = 0\)
\(x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0\)
\(x\left( {x - 1} \right)\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x - 1 = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) (thỏa mãn) hoặc \(x = 1\) (thỏa mãn) hoặc \(x = - 2\) (không thỏa mãn).
a) Đúng. Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Sai. Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right).\)
c) Sai. Phương trình đã cho có hai nghiệm là \(x = 0;\,\,x = 1.\)
d) Sai. Hai nghiệm này có giá trị không phải nguyên dương là \(x = 0\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\]
\[{x^2} + 4x + 4\; < x + {x^2}\;--3\]
\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\]
\[3x < - 7\]
\[x < - \frac{7}{3}\]
Do đó, nghiệm của bất phương trình là \[x < - \frac{7}{3}.\]
Vậy giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình đã cho là \(x = - 3.\)
Đáp án: −3.
Lời giải
a) Đúng. Do mỗi loại bạn An mua ít nhất 6 quả và giá của mỗi quả táo cao hơn mỗi quả lê, nên bạn An chỉ nên mua 6 quả táo để số quả lê mua được là nhiều nhất.
b) Đúng. Số quả lê bạn An đã mua là: \(x - 6\) (quả).
Số tiền bạn An dùng để mua 6 quả táo là: \(6 \cdot 22 = 132\) (nghìn đồng).
Số tiền bạn An dùng để mua \(x - 6\) quả lê là: \(10\left( {x - 6} \right)\) (nghìn đồng).
c) Đúng. Bạn An có 300 nghìn đồng để mua táo và lê nên ta có: \(132 + 10\left( {x - 6} \right) \le 300\)
d) Sai. Giải phương trình \(132 + 10\left( {x - 6} \right) \le 300\)
\(132 + 10x - 60 \le 300\)
\(10x \le 228\)
\(x \le 22,8\).
Mà tổng số hai loại quả mua được là nhiều nhất nên \(x\) là số nguyên lớn nhất, do đó \(x = 22.\)
Vậy bạn An có thể mua được nhiều nhất 22 quả táo và lê.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.