Tìm giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\].
Quảng cáo
Trả lời:
Ta có \[{\left( {x + 2} \right)^2}\; < x + {x^2}\;--3\]
\[{x^2} + 4x + 4\; < x + {x^2}\;--3\]
\[\left( {{x^2} - {x^2}} \right) + \left( {4x - x} \right) < - 4 - 3\]
\[3x < - 7\]
\[x < - \frac{7}{3}\]
Do đó, nghiệm của bất phương trình là \[x < - \frac{7}{3}.\]
Vậy giá trị nguyên lớn nhất của \(x\) thỏa mãn bất phương trình đã cho là \(x = - 3.\)
Đáp án: −3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện xác định: \(x \ne - 2\)\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)
Giải phương trình:
\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)
\(\frac{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} + \frac{{{x^2} - 2x + 4}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} = \frac{{12}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}\)
\(\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right) + {x^2} - 2x + 4 = 12\)
\({x^3} + 8 + {x^2} - 2x + 4 = 12\)
\({x^3} + {x^2} - 2x = 0\)
\(x\left( {{x^2} + x - 2} \right) = 0\)
\(x\left( {{x^2} - x + 2x - 2} \right) = 0\)
\(x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0\)
\(x\left( {x - 1} \right)\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x - 1 = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) (thỏa mãn) hoặc \(x = 1\) (thỏa mãn) hoặc \(x = - 2\) (không thỏa mãn).
a) Đúng. Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Sai. Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right).\)
c) Sai. Phương trình đã cho có hai nghiệm là \(x = 0;\,\,x = 1.\)
d) Sai. Hai nghiệm này có giá trị không phải nguyên dương là \(x = 0\).
Lời giải
a) Đúng. Do mỗi loại bạn An mua ít nhất 6 quả và giá của mỗi quả táo cao hơn mỗi quả lê, nên bạn An chỉ nên mua 6 quả táo để số quả lê mua được là nhiều nhất.
b) Đúng. Số quả lê bạn An đã mua là: \(x - 6\) (quả).
Số tiền bạn An dùng để mua 6 quả táo là: \(6 \cdot 22 = 132\) (nghìn đồng).
Số tiền bạn An dùng để mua \(x - 6\) quả lê là: \(10\left( {x - 6} \right)\) (nghìn đồng).
c) Đúng. Bạn An có 300 nghìn đồng để mua táo và lê nên ta có: \(132 + 10\left( {x - 6} \right) \le 300\)
d) Sai. Giải phương trình \(132 + 10\left( {x - 6} \right) \le 300\)
\(132 + 10x - 60 \le 300\)
\(10x \le 228\)
\(x \le 22,8\).
Mà tổng số hai loại quả mua được là nhiều nhất nên \(x\) là số nguyên lớn nhất, do đó \(x = 22.\)
Vậy bạn An có thể mua được nhiều nhất 22 quả táo và lê.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.