Điều kiện xác định của phương trình \[\frac{2}{{x + 3}} - \frac{{5x}}{{{x^3} + 27}} = \frac{{ - x}}{{{x^2} - 3x + 9}}\] là
Quảng cáo
Trả lời:

Chọn B
Ta có \[{x^3} + 27 = \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\].
Ta thấy rằng \[{x^2} - 3x + 9 = {\left( {x - \frac{3}{2}} \right)^2} + \frac{{27}}{4} \ne 0\] với mọi \[x \in \mathbb{R}.\]
Điều kiện xác định của phương trình đã cho là: \[x + 3 \ne 0\], tức là \[x \ne - 3.\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[{a^2} < ab\] và \[{a^3} > {b^3}\].
B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Lời giải
Chọn B
Với \[a > b > 0\] ta có: \[a \cdot a > a \cdot b\] hay \[{a^2} > ab\].
Ta có: \[{a^2} > ab\] nên \[{a^2} \cdot a > a \cdot ab\] hay \[{a^3} > {a^2}b\].
Mà \[a > b > 0\] nên \[ab > {b^2}\] suy ra \[{a^2}b > {b^3}\].
Khi đó \[{a^3} > {a^2}b > {b^3}\] hay \[{a^3} > {b^3}\].
Vậy \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Câu 2
A. \[5x + 7 < 0\].
Lời giải
Chọn A
Dựa vào định nghĩa bất phương trình bậc nhất một ẩn ta có:
Đáp án A là bất phương trình bậc nhất một ẩn.
Đáp án B không phải bất phương trình bậc nhất một ẩn vì \[a = 0\].
Đáp án C không phải là bất phương trình bậc nhất vì có \[{x^2}\].
Đáp án D không phải bất phương trình vì đây là phương trình bậc nhất một ẩn.
Câu 3
A. \[x > 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[x > - 4\,;\,\,x > \frac{7}{4}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.