Câu hỏi:

13/10/2025 6 Lưu

Hai bạn Nga và An vào cửa hàng mua bút. Biết giá của một cái bút bi là \(x\) nghìn đồng và một cái bút chì là \(10\) nghìn đồng. Bạn Nga mua hai cái bút bi và hai bút chì. Bạn An mua ba cái bút bi và hai cái bút chì. Bất đẳng thức biểu thị đúng sự so sánh số tiền của hai bạn phải trả cho cửa hàng là

A. \(2x + 20 < 3x + 20\). 

B. \(2x + 20 \ge 3x + 20\).  

C. \(3x + 20 = 2x + 20\). 
D. \(3x + 20 < 2x + 20\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Số tiền bạn Nga phải trả cho cửa hàng là \(2x + 20\) (nghìn đồng)

Số tiền bạn An phải trả cho cửa hàng là \(3x + 20\) (nghìn đồng)

Vì \(2x < 3x\) nên \(2x + 20 < 3x + 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{a^2} < ab\] và \[{a^3} > {b^3}\]. 

B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].

C. \[{a^2} < ab\] và \[{a^3} < {b^3}\]. 
D. \[{a^2} > ab\] và \[{a^3} < {b^3}\].

Lời giải

Chọn B

Với \[a > b > 0\] ta có: \[a \cdot a > a \cdot b\] hay \[{a^2} > ab\].

Ta có: \[{a^2} > ab\] nên \[{a^2} \cdot a > a \cdot ab\] hay \[{a^3} > {a^2}b\].

Mà \[a > b > 0\] nên \[ab > {b^2}\] suy ra \[{a^2}b > {b^3}\].

Khi đó \[{a^3} > {a^2}b > {b^3}\] hay \[{a^3} > {b^3}\].

Vậy \[{a^2} > ab\] và \[{a^3} > {b^3}\].

Câu 2

A. \[5x + 7 < 0\].    

B. \[0x + 6 > 0\].   
C. \[{x^2} - 2x > 0\].    
D. \[x - 10 = 3\].

Lời giải

Chọn A

Dựa vào định nghĩa bất phương trình bậc nhất một ẩn ta có:

Đáp án A là bất phương trình bậc nhất một ẩn.

Đáp án B không phải bất phương trình bậc nhất một ẩn vì \[a = 0\].

Đáp án C không phải là bất phương trình bậc nhất vì có \[{x^2}\].

Đáp án D không phải bất phương trình vì đây là phương trình bậc nhất một ẩn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[x \ne 0\] và \[x \ne 3.\]  
B. \[x \ne  - 3.\]  
C. \[x \ne 3.\]    
D. \[x \in \mathbb{R}\,.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP