Cho bất đẳng thức \[a \ge b\] thì
a) Bất đẳng thức cùng chiều là \[2a - 1 \ge 3 - 2b\].
b) Vế trái bất đẳng thức \[a \ge b\] là \[b\].
c) \[2a + 3 \ge 2b + 3\].
d) \[ - 5a + 5 \ge - 5b + 5\].
Cho bất đẳng thức \[a \ge b\] thì
a) Bất đẳng thức cùng chiều là \[2a - 1 \ge 3 - 2b\].
b) Vế trái bất đẳng thức \[a \ge b\] là \[b\].
c) \[2a + 3 \ge 2b + 3\].
d) \[ - 5a + 5 \ge - 5b + 5\].
Quảng cáo
Trả lời:

a) Đúng. Do cùng chứa dấu \[ \ge \] nên bất đẳng thức \[a \ge b\] cùng chiều là \[2a - 1 \ge 3 - 2b.\]
b) Sai. Vế trái bất đẳng thức \[a \ge b\] là \(a.\)
c) Đúng. Ta có \[a \ge b\] nên \[2a \ge 2b\] suy ra \[2a + 3 \ge 2b + 3.\] (nhân cả hai vế với cùng số dương nên bất đẳng thức không đổi chiều)
d) Sai. Ta có \[a \ge b\] nên \[ - 5a \le - 5b\] suy ra \[ - 5a + 5 \le - 5b + 5\] (nhân cả hai vế với cùng số âm nên bất đẳng thức đổi chiều)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[{a^2} < ab\] và \[{a^3} > {b^3}\].
B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Lời giải
Chọn B
Với \[a > b > 0\] ta có: \[a \cdot a > a \cdot b\] hay \[{a^2} > ab\].
Ta có: \[{a^2} > ab\] nên \[{a^2} \cdot a > a \cdot ab\] hay \[{a^3} > {a^2}b\].
Mà \[a > b > 0\] nên \[ab > {b^2}\] suy ra \[{a^2}b > {b^3}\].
Khi đó \[{a^3} > {a^2}b > {b^3}\] hay \[{a^3} > {b^3}\].
Vậy \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Câu 2
A. \[5x + 7 < 0\].
Lời giải
Chọn A
Dựa vào định nghĩa bất phương trình bậc nhất một ẩn ta có:
Đáp án A là bất phương trình bậc nhất một ẩn.
Đáp án B không phải bất phương trình bậc nhất một ẩn vì \[a = 0\].
Đáp án C không phải là bất phương trình bậc nhất vì có \[{x^2}\].
Đáp án D không phải bất phương trình vì đây là phương trình bậc nhất một ẩn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[{\left( {x + y} \right)^2} \le 4xy\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[7 - x < 2x\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.