Cho \(a < b\). Khi đó
a) \(4a - 2 > 4b - 2.\)
b) \(6 - 3a < 6 - 3b\).
c) \(4a + 1 < 4b + 5\).
d) \(7 - 2a > 4 - 2b\).
Cho \(a < b\). Khi đó
a) \(4a - 2 > 4b - 2.\)
b) \(6 - 3a < 6 - 3b\).
c) \(4a + 1 < 4b + 5\).
d) \(7 - 2a > 4 - 2b\).
Quảng cáo
Trả lời:

a) Sai. Vì \(a < b\) suy ra \(4a < 4b\) hay \(4a - 2 < 4b - 2\)
b) Sai. Vì \(a < b\) suy ra \( - 3a > - 3b\) hay \(6 - 3a > 6 - 3b\).
c) Đúng. Vì \(a < b\) suy ra \(4a < 4b\) nên \(4a + 1 < 4b + 1 < 4b + 5\) hay \(4a + 1 < 4b + 5\).
d) Đúng. Vì \(a < b\) suy ra \( - 2a > - 2b\) nên \(7 - 2a > 7 - 2b > 4 - 2b\) hay \(7 - 2a > 4 - 2b\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[{a^2} < ab\] và \[{a^3} > {b^3}\].
B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Lời giải
Chọn B
Với \[a > b > 0\] ta có: \[a \cdot a > a \cdot b\] hay \[{a^2} > ab\].
Ta có: \[{a^2} > ab\] nên \[{a^2} \cdot a > a \cdot ab\] hay \[{a^3} > {a^2}b\].
Mà \[a > b > 0\] nên \[ab > {b^2}\] suy ra \[{a^2}b > {b^3}\].
Khi đó \[{a^3} > {a^2}b > {b^3}\] hay \[{a^3} > {b^3}\].
Vậy \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Câu 2
Lời giải
Chọn B
Ta có \[{x^3} + 27 = \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\].
Ta thấy rằng \[{x^2} - 3x + 9 = {\left( {x - \frac{3}{2}} \right)^2} + \frac{{27}}{4} \ne 0\] với mọi \[x \in \mathbb{R}.\]
Điều kiện xác định của phương trình đã cho là: \[x + 3 \ne 0\], tức là \[x \ne - 3.\]
Câu 3
A. \[5x + 7 < 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[x > 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[x > - 4\,;\,\,x > \frac{7}{4}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.