Câu hỏi:

13/10/2025 51 Lưu

Dạng 3. Trắc nghiệm trả lời ngắn

Trong mỗi câu hỏi, thí sinh viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Cho hai biểu thức \[A = \frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}}\] và \[B = \frac{{x - 5}}{{9{x^2} - 1}}.\] Có bao nhiêu giá trị nào của \[x\] để

hai biểu thức \[A\] và \[B\] có cùng một giá trị?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề, ta có \[A = B\].

Tức là, \[\frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}} = \frac{{x - 5}}{{9{x^2} - 1}}\].    (1)

Điều kiện xác định: \[x \ne \frac{1}{3}\] và \[x \ne  - \frac{1}{3}.\]

Từ (1), ta có: \[\frac{3}{{3x + 1}} - \frac{2}{{3x - 1}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\]

\[\frac{{3\left( {3x - 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} - \frac{{2\left( {3x + 1} \right)}}{{\left( {3x - 1} \right)\left( {3x + 1} \right)}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\]

\[3\left( {3x - 1} \right) - 2\left( {3x + 1} \right) = x - 5\]

\[9x - 3 - 6x - 2 = x - 5\]

\[2x = 0\]

\[x = 0\] (TMĐK).

Do đó, khi \[x = 0\] thì \[A = B.\]

Vậy có 1 giá trị nào của \[x\] để hai biểu thức \[A\] và \[B\] có cùng một giá trị.

Đáp án: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có: \(m\left( {2x + 1} \right) < 8\) nên \(2mx + m - 8 < 0\).

Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) khi \(2m \ne 0\) hay \(m \ne 0\).

b) Đúng. Khi \(m = 1,\) bất phương trình đã cho trở thành: \(2x - 7 < 0\) hay \(2x < 7\) nên \(x < \frac{7}{2}.\)

Như vậy, khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}.\)

c) Sai. Khi \(m =  - 1,\) bất phương trình đã cho trở thành: \( - 2x - 9 < 0\) hay \( - 2x < 9\) nên \(x >  - \frac{9}{2}.\)

Như vậy, khi \(m =  - 1,\) bất phương trình đã cho có nghiệm là \(x >  - \frac{9}{2}.\)

d) Sai. Khi \(m =  - 2,\) bất phương trình đã cho trở thành: \( - 4x - 10 < 0\) hay \( - 4x < 10\) nên \(x >  - \frac{5}{2}.\)

Khi đó, bất phương trình có nghiệm nguyên nhỏ nhất là \( - 2\).

Lời giải

Gọi số chai nhiều nhất bác An mua được là \(x\) (chai) \(\left( {x \in {\mathbb{N}^*}} \right)\)

Theo bài ra ta có: \(45\,\,000x + 190\,\,000 + 110\,\,000 \le 500\,\,000\)

\(45\,\,000x + 300\,\,000 \le 500\,\,000\)

\(45\,\,000x \le 200\,\,000\)

\(x \le \frac{{40}}{9} = 4,44....\).

Mà \(x\) lớn nhất, \(x \in {\mathbb{N}^*}\) nên \(x = 4\).

Vậy bác An mua được nhiều nhất \(4\) chai.

Đáp án: 4.

Câu 3

Cho phương trình \(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\).

a) Điều kiện xác định của phương trình đã cho là \(x \ne  - 2\).

b) Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right)\).

c) Phương trình đã cho có ba nghiệm.

d) Tất cả các nghiệm của phương trình đã cho đều có giá trị nguyên dương.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP