Một doanh nghiệp sử dụng than để sản xuất. Doanh nghiệp đó lập kế hoạch tài chính cho viẹc loại bỏ chất ô nhiễm trong khí thải theo dự kiến sau: Để loại bỏ \(p\% \) chất ô nhiễm trong khí thải thì chi phí \(C\) (triệu đồng) được tính theo công thức \(C = \frac{{80}}{{100 - p}}\), với \(0 \le p < 100\). Với chi phí là 420 triệu đồng thì doanh nghiệp loại bỏ được bao nhiêu phầm trăm chất gây ô nhiễm trong khí thải (làm tròn kết quả đến hàng phần mười).
Một doanh nghiệp sử dụng than để sản xuất. Doanh nghiệp đó lập kế hoạch tài chính cho viẹc loại bỏ chất ô nhiễm trong khí thải theo dự kiến sau: Để loại bỏ \(p\% \) chất ô nhiễm trong khí thải thì chi phí \(C\) (triệu đồng) được tính theo công thức \(C = \frac{{80}}{{100 - p}}\), với \(0 \le p < 100\). Với chi phí là 420 triệu đồng thì doanh nghiệp loại bỏ được bao nhiêu phầm trăm chất gây ô nhiễm trong khí thải (làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:
Theo đề bài ta có phương trình
\(420 = \frac{{80}}{{100 - p}}\)
\(\frac{{420(100 - p)}}{{100 - p}} = \frac{{80}}{{100 - p}}\)
\(420(100 - p) = 80\)
\(42000 - 420p = 80\)
\(420p = 41\,\,920\)
\(p \approx 99,8\) (thỏa mãn \(0 \le p < 100\)).
Vậy với \(420\) triệu đồng thì doanh nghiệp loại bỏ được \(99,8\% \) chất gây ô nhiễm môi trường.
Đáp án: 99,8.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có: \(m\left( {2x + 1} \right) < 8\) nên \(2mx + m - 8 < 0\).
Bất phương trình đã cho là bất phương trình bậc nhất ẩn \(x\) khi \(2m \ne 0\) hay \(m \ne 0\).
b) Đúng. Khi \(m = 1,\) bất phương trình đã cho trở thành: \(2x - 7 < 0\) hay \(2x < 7\) nên \(x < \frac{7}{2}.\)
Như vậy, khi \(m = 1,\) bất phương trình đã cho có nghiệm là \(x < \frac{7}{2}.\)
c) Sai. Khi \(m = - 1,\) bất phương trình đã cho trở thành: \( - 2x - 9 < 0\) hay \( - 2x < 9\) nên \(x > - \frac{9}{2}.\)
Như vậy, khi \(m = - 1,\) bất phương trình đã cho có nghiệm là \(x > - \frac{9}{2}.\)
d) Sai. Khi \(m = - 2,\) bất phương trình đã cho trở thành: \( - 4x - 10 < 0\) hay \( - 4x < 10\) nên \(x > - \frac{5}{2}.\)
Khi đó, bất phương trình có nghiệm nguyên nhỏ nhất là \( - 2\).
Câu 2
Cho phương trình \(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\).
a) Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right)\).
c) Phương trình đã cho có ba nghiệm.
d) Tất cả các nghiệm của phương trình đã cho đều có giá trị nguyên dương.
Cho phương trình \(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\).
a) Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right)\).
c) Phương trình đã cho có ba nghiệm.
d) Tất cả các nghiệm của phương trình đã cho đều có giá trị nguyên dương.
Lời giải
Điều kiện xác định: \(x \ne - 2\)
Giải phương trình:
\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)
\(\frac{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} + \frac{{{x^2} - 2x + 4}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} = \frac{{12}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}\)
\(\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right) + {x^2} - 2x + 4 = 12\)
\({x^3} + 8 + {x^2} - 2x + 4 = 12\)
\({x^3} + {x^2} - 2x = 0\)
\(x\left( {{x^2} + x - 2} \right) = 0\)
\(x\left( {{x^2} - x + 2x - 2} \right) = 0\)
\(x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0\)
\(x\left( {x - 1} \right)\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x - 1 = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) (thỏa mãn) hoặc \(x = 1\) (thỏa mãn) hoặc \(x = - 2\) (không thỏa mãn).
a) Đúng. Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Sai. Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right).\)
c) Sai. Phương trình đã cho có hai nghiệm là \(x = 0;\,\,x = 1.\)
d) Sai. Hai nghiệm này có giá trị không phải nguyên dương là \(x = 0\).
Câu 3
A. \(700\) triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.