Cho hàm số \(f\left( x \right) = \sin 2x\) liên tục trên ℝ, \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\).
a) \(\int\limits_0^\pi {f\left( x \right)dx} = 0\).
b) Biết \(F\left( 0 \right) = \frac{1}{2}\) thì \(F\left( {\frac{\pi }{2}} \right) = 1\).
c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\cos x - f\left( x \right)} \right)dx} = 2\).
d) \(\int\limits_{ - \pi }^\pi {\left| {f\left( x \right)} \right|dx} = 4\).
Cho hàm số \(f\left( x \right) = \sin 2x\) liên tục trên ℝ, \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\).
a) \(\int\limits_0^\pi {f\left( x \right)dx} = 0\).
b) Biết \(F\left( 0 \right) = \frac{1}{2}\) thì \(F\left( {\frac{\pi }{2}} \right) = 1\).
c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\cos x - f\left( x \right)} \right)dx} = 2\).
d) \(\int\limits_{ - \pi }^\pi {\left| {f\left( x \right)} \right|dx} = 4\).
Quảng cáo
Trả lời:
a) \(\int\limits_0^\pi {f\left( x \right)dx} = \int\limits_0^\pi {\sin 2xdx} \)\( = \left. { - \frac{1}{2}\cos 2x} \right|_0^\pi = - \frac{1}{2} + \frac{1}{2} = 0\).
b) Có \(F\left( x \right) = \int {f\left( x \right)dx} = \int {\sin 2x} dx = - \frac{1}{2}\cos 2x + C\).
Có \(F\left( 0 \right) = \frac{1}{2} \Rightarrow C = 1\). Suy ra \(F\left( x \right) = - \frac{1}{2}\cos 2x + 1\).
Do đó \(F\left( {\frac{\pi }{2}} \right) = - \frac{1}{2}\cos \pi + 1 = \frac{3}{2}\).
c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\cos x - f\left( x \right)} \right)dx} = \int\limits_0^{\frac{\pi }{2}} {\left( {\cos x - \sin 2x} \right)dx} \)\( = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} - \int\limits_0^{\frac{\pi }{2}} {\sin 2xdx} \)\( = \left. {\sin x} \right|_0^{\frac{\pi }{2}} + \left. {\frac{1}{2}\cos 2x} \right|_0^{\frac{\pi }{2}} = 1 - \frac{1}{2} - \frac{1}{2} = 0\).
d) \(\int\limits_{ - \pi }^\pi {\left| {f\left( x \right)} \right|dx} = \int\limits_{ - \pi }^\pi {\left| {\sin 2x} \right|dx} \)\( = 2\int\limits_0^\pi {\sin 2xdx} = 2.0 = 0\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(A = \int\limits_0^1 {\left( {{x^2} - x + 2024m} \right)dx = 5} \)\( \Leftrightarrow \left. {\left( {\frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 2024mx} \right)} \right|_0^1 = 5\)\( \Leftrightarrow 2024m - \frac{1}{6} = 5\)\( \Leftrightarrow 2024m = \frac{{31}}{6}\)
Thay \(2024m = \frac{{31}}{6}\) vào B, ta được \(B = \int\limits_1^2 {\left( {{x^2} - 3x + \frac{{49}}{6}} \right)dx} = \left. {\left( {\frac{1}{3}{x^3} - \frac{3}{2}{x^2} + \frac{{49}}{6}x} \right)} \right|_1^2 = 6\).
Trả lời: 6.
Lời giải
Ta có \(\int\limits_0^2 {f\left( x \right)dx} = F\left( 2 \right) - F\left( 0 \right)\)\( \Rightarrow F\left( 2 \right) = \int\limits_0^2 {f\left( x \right)dx} + F\left( 0 \right) = 3 + 2 = 5\).
Trả lời: 5.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.