Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Quảng cáo
Trả lời:
a) Có \(f'\left( x \right) = 1 + \frac{6}{{{x^2}}} = g\left( x \right)\).
Do đó f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \int {\left( {x + 5 - \frac{6}{x}} \right)dx} = \frac{{{x^2}}}{2} + 5x - 6\ln \left| x \right| + C\).
c) Có \(\int\limits_1^2 {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_1^2 = F\left( 2 \right) - F\left( 1 \right)\)\( \Rightarrow F\left( 2 \right) = F\left( 1 \right) + \int\limits_1^2 {f\left( x \right)dx} = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) \(G\left( x \right) = \frac{{{x^2}}}{2} + 5x - 6\ln \left| x \right| + C = \left\{ \begin{array}{l}\frac{{{x^2}}}{2} + 5x - 6\ln x + {C_1}\;\;khi\;x \ge 0\\\frac{{{x^2}}}{2} + 5x - 6\ln \left( { - x} \right) + {C_2}\;\;khi\;x < 0\end{array} \right.\).
Ta có \(G\left( 1 \right) = 4 \Rightarrow \frac{1}{2} + 5 + {C_1} = 4 \Rightarrow {C_1} = - \frac{3}{2}\).
Có \(G\left( 2 \right) + G\left( { - 1} \right) = 5\)\( \Leftrightarrow 12 - 6\ln 2 - \frac{3}{2} - \frac{9}{2} + {C_2} = 5 \Rightarrow {C_2} = 6\ln 2 - 1\).
Khi đó \(G\left( { - 6} \right) = \frac{{36}}{2} - 30 - 6\ln 6 + 6\ln 2 - 1 = - 13 - 6\ln 3\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đưa hình vẽ về dạng của hàm số \(y = a\sqrt x \)
Chọn hệ trục Oxy với Ox đi qua chính giữa trục của mảnh đất (theo chiều của chiều cao), gốc tọa độ O cách điểm chính giữa của đoạn AB là 4, khi đó ta có \({y_B} = 4;{y_C} = 6\) nên B(4; 4), C(9; 6).

Do đó ta tìm được a = 2.
Suy ra \(S = 2\int\limits_4^9 {2\sqrt x dx} = \frac{{152}}{3} \approx 50,7\).
Trả lời: 50,7.
Lời giải

Chọn hệ trục Oxy như hình vẽ sao cho A ≡ O.
Suy ra cạnh cong AE nằm trên parabol \(\left( P \right):y = a{x^2} + bx + c\).
\(\left( P \right)\) đi qua các điểm \(\left( {0;0} \right),\left( {2;1} \right),\left( {4;\frac{7}{2}} \right)\) nên \(\left( P \right):y = \frac{3}{{16}}{x^2} + \frac{1}{8}x\).
Khi đó diện tích tam giác cong ACE có diện tích \(S = \int\limits_0^4 {\left( {\frac{3}{{16}}{x^2} + \frac{1}{8}x} \right)} dx = 5\) m2.
Vậy thể tích của khối bê tông cần sử dụng là V = 5.4 = 20 m3.
Trả lời: 20.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


