Trong không gian \(Oxyz\), phương trình nào trong các phương trình sau là phương trình của một mặt cầu?
\(\left( S \right):{x^2} + {y^2} - {z^2} - 4x + 2y + 2z - 3 = 0\).
\(\left( S \right):{x^2} + 2{y^2} + {z^2} - 4x + 2y + 2z - 10 = 0\).
\(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 2z + 2 = 0\).
\(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y + 2z + 8 = 0\).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 5 có đáp án !!
Quảng cáo
Trả lời:

Đáp án đúng: C
Phương trình: \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) \(\left( {{a^2} + {b^2} + {c^2} - d > 0} \right)\) là phương trình mặt cầu có tâm \(I\left( {a\,;\,b\,;\,c} \right)\), bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Ở đáp án A và B không đúng dạng phương trình mặt cầu vì hệ số của \({x^2},{y^2},{z^2}\) không bằng nhau nên phương trình ở đáp án A, B không là phương trình mặt cầu.
Trong đáp án D ta có: \(\left\{ \begin{array}{l}a = 2\\b = - 1\\c = - 1\\d = 8\end{array} \right. \Rightarrow {a^2} + {b^2} + {c^2} - d = - 2 < 0\) nên phương trình ở đáp án D không là phương trình mặt cầu.
Trong đáp án C ta có: \(\left\{ \begin{array}{l}a = 2\\b = - 1\\c = - 1\\d = 2\end{array} \right. \Rightarrow {a^2} + {b^2} + {c^2} - d = 4 > 0\) nên phương trình ở đáp án C là phương trình mặt cầu.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).
Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).
Áp dụng bất đẳng thức Minkowski ta có:
\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)
\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).
Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)
Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).
Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).
Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).
\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).
Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).
Đáp án: 44 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.