Câu hỏi:

16/10/2025 9 Lưu

Trong không gian \(Oxyz\), mặt cầu \(\left( S \right)\) có phương trình: \({\left( {x - a} \right)^2} + {y^2} + {\left( {z - c} \right)^2} = 16\) đi qua hai điểm \(O\) và \(M\left( {1;0;1} \right)\). Tính \(a + c\).

\(a + c = 4\).

\(a + c = 16\).

\(a + c = 1\).

\(a + c = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: C

Vì mặt cầu \(\left( S \right)\) đi qua \(O\left( {0;0;0} \right)\) nên: \({a^2} + {c^2} = 16\). \(\left( 1 \right)\)

Vì mặt cầu \(\left( S \right)\) đi qua \(M\left( {1;0;1} \right)\) nên: \({\left( {1 - a} \right)^2} + {\left( {1 - c} \right)^2} = 16\). \(\left( 2 \right)\)

\(\left( 2 \right) \Leftrightarrow {a^2} + {c^2} - 2\left( {a + c} \right) + 2 = 16\) \(\left( 3 \right)\).

Thay \(\left( 1 \right)\) vào \(\left( 3 \right)\) \( \Rightarrow 16 - 2\left( {a + c} \right) + 2 = 16 \Leftrightarrow a + c = 1\)\( \Rightarrow a = 1 - c\).

Thay \(a = 1 - c\) vào \(\left( 1 \right)\) \( \Rightarrow {\left( {1 - c} \right)^2} + {c^2} = 16 \Rightarrow c = \frac{{1 \pm \sqrt {31} }}{2}\) \( \Rightarrow \) Có tồn tại mặt cầu \(\left( S \right)\) thỏa mãn đề bài. Vậy \(a + c = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).

Đáp án: 44 .