Câu hỏi:

16/10/2025 10 Lưu

Dạng 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Trong không gian với hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục là mét), một ngọn hải đăng được đặt ở vị trí \(I\left( {10;\,\,20;\,\,30} \right)\) với bán kính phủ sáng là \(3\)km.

( a) Phương trình mặt cầu mô tả ranh giới bên ngoài của vùng phủ sáng trên biển của hải đăng là

\({\left( {x - 10} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z - 30} \right)^2} = {3000^2}\).

(b) Người đi biển ở vị trí \(A\left( {50;20;0} \right)\) nhìn thấy được ánh sáng của ngọn hải đăng.

(c) Người đi biển ở vị trí \(B\left( {4030;\,\,50;\,\,40} \right)\) nhìn thấy được ánh sáng của ngọn hải đăng.

(d) Nếu hai người đi biển có thể nhìn thấy ánh sáng của ngọn hải đăng thì khoảng cách giữa hai người đó không quá \(6\)km.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

, b), c), d)<i> ở mỗi câu, thí sinh chọn đúng hoặc sai.</i> Trong không gian với hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục là mét), một ngọn hải đăng được đặt ở vị trí \(I\left( {10;\,\,20;\,\,30} \right)\) với bán kính phủ sáng là \(3\)km. ( a) Phương trình mặt cầu mô tả ranh giới bên ngoài của vùng phủ sáng trên biển của hải đăng là \({\left( {x - 10} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z - 30} \right)^2} = {3000^2}\). (b) Người đi biển ở vị trí \(A\left( {50;20;0} \right)\) nhìn thấy được ánh sáng của ngọn hải đăng. (c) Người đi biển ở vị trí \(B\left( {4030;\,\,50;\,\,40} \right)\) nhìn thấy được ánh sáng của ngọn hải đăng. (d) Nếu hai người đi biển có thể nhìn thấy ánh sáng của ngọn hải đăng thì khoảng cách giữa hai người đó không quá \(6\)km.

a) Đúng. Mặt cầu \(\left( S \right)\) tâm \(I\left( {10;\,\,20;\,\,30} \right)\), bán kính \(R = 3\)km = \(3000\)m có phương trình

\({\left( {x - 10} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z - 30} \right)^2} = {3000^2}\).

b) Đúng. Ta có \(\overrightarrow {IA} = \left( {40;\,0;\, - 30} \right) \Rightarrow IA = \sqrt {{{40}^2} + {0^2} + {{30}^2}} = 50\,{\rm{m}} < \,R = 3000\,{\rm{m}}\)nên điểm \(A\) nằm trong mặt cầu \(\left( S \right)\) nên người đi biển ở vị trí \(A\left( {50;20;0} \right)\) nhìn thấy được ánh sáng của ngọn hải đăng.

c) Sai. Ta có \(\overrightarrow {IB} = \left( {4020;\,30;\,10} \right) \Rightarrow IB = \sqrt {{{4020}^2} + {{30}^2} + {{10}^2}} \approx 4020,12\,{\rm{m}} > R = 3000\,{\rm{m}}\)nên điểm \(B\) nằm ngoài mặt cầu \(\left( S \right)\) nên người đi biển ở vị trí \(B\left( {4030;\,\,50;\,\,40} \right)\) không nhìn thấy được ánh sáng của ngọn hải đăng.

d) Đúng. Vì bán kính phủ sáng là \(3\)km nên đường kính phủ sáng là \(6\)km nên nếu hai người đi biển có thể nhìn thấy ánh sáng của ngọn hải đăng thì hai người đó nằm trong mặt cầu, do đó khoảng cách giữa hai người đó không quá \(6\)km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).

Đáp án: 44 .