Câu hỏi:

16/10/2025 28 Lưu

Bác An cần thiết kế một nhà vườn ngoài trời để trồng hoa. Bác đã thiết kế và vẽ mô hình nhà vườn trong hệ trục toạ độ \[Axyz\] như hình vẽ, với các cột nhà là các đoạn thẳng \[AA',\,BB',\,CC'\] và \[DD'\]. Phần mái là tứ giác \(A'B'C'D'\) và hình vuông \(ABCD\) nằm trên mặt đất. Biết độ dài các đoạn thẳng \(AB = 25\,{\rm{m}},AA' = BB' = 4\,{\rm{m}}\) và \(CC' = DD' = 3\,{\rm{m}}\).

index_html_dfe3d09d603f5e9e.png

(a) Toạ độ điểm \(A'\left( {0;\,0;\,4} \right)\).

(b) Đường thẳng \(A'D'\) có phương trình tham số là \[\left\{ {\begin{array}{*{20}{c}}{x = 25t}\\{y = 0\,\,\,\,\,\,}\\{z = 4 - t}\end{array}\,\,\,\begin{array}{*{20}{c}}{}\\{,t \in \mathbb{R}}\\{}\end{array}} \right.\].

(c) Bác An đặt một camera ở vị trí \(E\) trên cột \(AA'\) và cách mặt đất \(7\,{\rm{m}}\). Một vật ở vị trí \(M\left( {a;\,b;\,c} \right)\) thoả mãn \(MA = MB = MC = MD = \sqrt {\frac{{697}}{2}} \) thì cách camera \(\frac{{\sqrt {1266} }}{2}{\rm{m}}\).

(d) Gọi \(\alpha \) là góc hợp bởi đường thẳng \(A'D'\) và mặt đất. Khi đó \(\cos \alpha = \frac{1}{{\sqrt {626} }}\,\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \[AA' = 4\,{\rm{m}}\] nên toạ độ \(A'\left( {0;\,0;\,4} \right)\).

b) Đúng. Toạ độ điểm \(D'\left( {25;\,0;\,3} \right)\) nên vectơ chỉ phương \[{\overrightarrow u _{A'D'}} = \overrightarrow {A'D'} = \left( {25;\,0;\, - 1} \right)\].

Phương trình đường thẳng \(A'D'\) có vectơ chỉ phương \[{\overrightarrow u _{A'D'}} = \left( {25;\,0;\, - 1} \right)\] và đi qua điểm \(A'\left( {0;\,0;\,4} \right)\)là \[\left\{ {\begin{array}{*{20}{c}}{x = 25t}\\{y = 0\,\,\,\,\,\,}\\{z = 4 - t}\end{array}\,\,\,\begin{array}{*{20}{c}}{}\\{,t \in \mathbb{R}}\\{}\end{array}} \right.\].

c) Sai. Điểm \[E\]nằm trên cột \(AA'\) và cách mặt đất 7 m suy ra toạ độ \(E\left( {0;\,0;\,7} \right)\).

Gọi \[I\]là giao điểm của \[AC\]và \[\;BD\]. Do \(ABCD\) là hình vuông có cạnh \(AB = 25\,{\rm{m}}\) nên điểm \[I\]có toạ độ \(I\left( {\frac{{25}}{2};\frac{{25}}{2};0} \right)\) mà \(MA = MB = MC = MD\), do đó \(I\) là hình chiếu của \(M\) lên mặt phẳng \(\left( {ABCD} \right)\). Suy ra \(M\left( {\frac{{25}}{2};\frac{{25}}{2};c} \right)\) mà \(MA = \sqrt {\frac{{697}}{2}} \Leftrightarrow {\left( {\frac{{25}}{2}} \right)^2} + {\left( {\frac{{25}}{2}} \right)^2} + {c^2} = \frac{{697}}{2} \Leftrightarrow c = 6\)

\( \Rightarrow M\left( {\frac{{25}}{2};\frac{{25}}{2};6} \right)\) \( \Rightarrow ME = 17,706\).

d) Sai. Ta có \[\overrightarrow {A'D'} = \left( {25;\,0;\, - 1} \right)\] và vectơ pháp tuyến của mặt đất là \({\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;\,0;\,1} \right)\) do đó góc hợp với đường thẳng \(A'D'\) và mặt đất là \(\sin \alpha = \frac{{\left| {25.0 + 0.0 + ( - 1).1} \right|}}{{\sqrt {{{25}^2} + {{( - 1)}^2}} .\sqrt {{1^2}} }} = \frac{1}{{\sqrt {626} }}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Chọn hệ trục Oxyz với gốc \(O\) đặt tại điểm xuất phát của hai flycam, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo mét.

Gọi \(A,B,M\) lần lượt là vị trí của flycam thứ nhất, flycam thứ hai và người quan sát.

Khi đó \(A\left( {300;100;100} \right),B\left( { - 200; - 100;50} \right),M\left( {a;b;0} \right)\).

Gọi \(B'\) là điểm đối xứng của \(B\) qua mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(B'\left( { - 200; - 100; - 50} \right)\).

Ta có \(MA + MB = MA + MB' \ge AB'\).

Do đó \(MA + MB\) nhỏ nhất khi bằng \(AB'\) hay \(M\) là giao điểm của \(AB'\) với mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(A,B',M\) thẳng hàng hay \(\overrightarrow {AM} ,\overrightarrow {AB'} \) cùng phương.

Có \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AM} = \left( {a - 300;b - 100; - 100} \right)}\\{\overrightarrow {AB'} \left( { - 500; - 200; - 150} \right)}\end{array}} \right.\).

\( \Rightarrow \frac{{a - 300}}{{ - 500}} = \frac{{b - 100}}{{ - 200}} = \frac{{ - 100}}{{ - 150}} = \frac{2}{3} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{{100}}{3}}\\{b = - \frac{{100}}{3}}\end{array}} \right.\).

Suy ra \(M\left( { - \frac{{100}}{3}; - \frac{{100}}{3};0} \right)\).

Vậy khoảng cách từ vị trí người quan sát đến địa điểm xuất phát của hai chiếc flycam là: \(OM = \frac{{100\sqrt 2 }}{3} \approx 47\).

Đáp án : 47.