Trong không gian với hệ tọa độ \(Oxyz\), một cabin cáp treo xuất phát từ điểm \(A\left( {10;3;0} \right)\) và chuyển động đều theo đường cáp có vectơ chỉ phương là \(\vec u = \left( {2; - 2;1} \right)\) với tốc độ \(4,5\)m/s (đơn vị trên mỗi trục tọa độ là mét).

(a) Phương trình tham số của đường cáp là: \(\left\{ \begin{array}{l}x = 10 + 2t\\y = 3 - 2t\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).
(b) Giả sử sau thời gian \(t\)(s) kể từ lúc xuất phát \(\left( {t \ge 0} \right)\) thì cabin đến điểm \(M\). Khi đó tọa độ điểm \(M\) là \(M\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).
(c) Cabin dừng ở điểm \(B\) có hoành độ \({x_B} = 550\), khi đó quãng đường \(AB\) dài 800 m.
(d) Đường cáp \(AB\) tạo với mặt phẳng \(\left( {Oxy} \right)\) một góc \(30^\circ \).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 5 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng. Phương trình tham số của đường cáp là: \(\left\{ \begin{array}{l}x = 10 + 2t\\y = 3 - 2t\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).
b) Đúng. Ta có \(AM = v.t = 4,5t\) và ta gọi \(M\left( {10 + 2m\,;\,\,3 - 2m\,;\,\,m} \right)\) thuộc đường thẳng \(d\).
Khi đó: \(\overrightarrow {AM} = \left( {2m;\, - 2m;\,m} \right)\) và \(\overrightarrow {AM} \) cùng hướng với vectơ \(\overrightarrow u \) nên \(m\) dương.
Suy ra \(m = 1,5t\) nên \(M\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).
c) Sai. Từ câu trên suy ra \(M \equiv B \Leftrightarrow 10 + 3t = 550 \Leftrightarrow t = 180\).
Khi đó: \(AB = vt = 4,5.t = 4,5.180 = 810\)mét.
d) Sai. Ta có \(\overrightarrow {{u_{AB}}} = \left( {2;\, - 2;\,1} \right)\) và mặt phẳng \(\left( {Oxy} \right)\) là \(z = 0\) nên ta có \(\overrightarrow n = \left( {0\,;\,0;\,1} \right)\).
Từ đó: \(\sin \alpha = \left| {\frac{{\overrightarrow u .\overrightarrow n }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}}} \right| = \frac{1}{3}\) nên \(\alpha \ne 30^\circ \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Ta có \(AB\) ngắn nhất khi \(AB\) là đoạn vuông góc chung của \({d_1}\) và \({d_2}\).
Gọi \(A\left( {2 + a;2 + a; - a} \right) \in {d_1};\,\,B\left( {2 + b; - 1 + 2b; - 3b} \right) \in {d_2}\)\( \Rightarrow \overrightarrow {AB} \left( {b - a;2b - a - 3; - 3b + a} \right)\).
\({d_1},\,{d_2}\) lần lượt có các véc tơ chỉ phương là \({\vec u_{{d_1}}} = \left( {1;1; - 1} \right)\) và \({\vec u_{{d_2}}} = \left( {1;2; - 3} \right)\)
Ta có: \[\left\{ \begin{array}{l}\overrightarrow {AB} .{{\vec u}_{{d_1}}} = 0\\\overrightarrow {AB} .{{\vec u}_{{d_2}}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1\left( {b - a} \right) + 1\left( {2b - a - 3} \right) - 1\left( { - 3b + a} \right) = 0\\1\left( {b - a} \right) + 2\left( {2b - a - 3} \right) - 3\left( { - 3b + a} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6b - 3a - 3 = 0\\14b - 6a - 6 = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;1;1} \right)\\B\left( {2; - 1;0} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} = \left( {1; - 2; - 1} \right)\]
Do đó \[\left| {\overrightarrow {AB} } \right| = \sqrt 6 \approx 2,45\].
Đáp án: 2,45.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


