Câu hỏi:

16/10/2025 66 Lưu

Trong không gian \[Oxyz\] (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí \[I\left( {1;\,3;\,7} \right)\]. Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3 km.

(a) Phương trình mặt cầu \[\left( S \right)\] để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \[{\left( {x + 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 7} \right)^2} = 9\].

(b) Nếu người dùng điện thoại ở vị trí điểm \[A\left( {2;\,2;\,7} \right)\] thì có thể sử dụng dịch vụ của trạm thu phát sóng đó.

(c) Nếu người dùng điện thoại ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] thì không thể sử dụng dịch vụ của trạm thu phát sóng đó.

(d)Tính theo đường chim bay, khoảng cách lớn nhất để một người ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] di chuyển được tới vùng phủ sóng theo đơn vị ki-lô-mét là \[8\,\]km.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Phương trình mặt cầu \[\left( S \right)\] tâm \[I\left( {1;\,3;\,7} \right)\] bán kính 3 km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\].

b) Đúng. Ta có: \[IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}} = \sqrt 2 < 3\] nên điểm \[A\] nằm trong mặt cầu. Vì điểm \[A\] nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ \[A\left( {2;\,2;\,7} \right)\] có thể sử dụng dịch vụ của trạm thu phát sóng đó.

c) Đúng. Ta có: \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}} = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Vậy người dùng điện thoại ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] không thể sử dụng dịch vụ của trạm thu phát sóng đó.

d) Đúng. Ta có: \[\overrightarrow {IB} \left( {4;\,3;\,0} \right);\] \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}} = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Phương trình đường thẳng \[BI\] dạng: \[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\end{array} \right.\].

Gọi mặt cầu \[\left( S \right) \cap BI \equiv E\]suy ra tọa độ \[E\] là nghiệm của hệ

\[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}t = \frac{3}{5}\\x = \frac{{17}}{5}\\y = \frac{{24}}{5}\\z = 7\end{array} \right. \Rightarrow E\left( {\frac{{17}}{5};\,\frac{{24}}{5};7} \right) \Rightarrow EB \approx 1,7\\\left\{ \begin{array}{l}t = - \frac{3}{5}\\x = - \frac{7}{5}\\y = \frac{6}{5}\\z = 7\end{array} \right. \Rightarrow E\left( { - \frac{7}{5};\,\frac{6}{5};7} \right) \Rightarrow EB = 8\end{array} \right.\]

Vậy khoảng cách lớn nhất để một người ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] di chuyển được tới vùng phủ sóng theo đơn vị kilômét là \[8\,\]km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Chọn hệ trục Oxyz với gốc \(O\) đặt tại điểm xuất phát của hai flycam, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo mét.

Gọi \(A,B,M\) lần lượt là vị trí của flycam thứ nhất, flycam thứ hai và người quan sát.

Khi đó \(A\left( {300;100;100} \right),B\left( { - 200; - 100;50} \right),M\left( {a;b;0} \right)\).

Gọi \(B'\) là điểm đối xứng của \(B\) qua mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(B'\left( { - 200; - 100; - 50} \right)\).

Ta có \(MA + MB = MA + MB' \ge AB'\).

Do đó \(MA + MB\) nhỏ nhất khi bằng \(AB'\) hay \(M\) là giao điểm của \(AB'\) với mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(A,B',M\) thẳng hàng hay \(\overrightarrow {AM} ,\overrightarrow {AB'} \) cùng phương.

Có \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AM} = \left( {a - 300;b - 100; - 100} \right)}\\{\overrightarrow {AB'} \left( { - 500; - 200; - 150} \right)}\end{array}} \right.\).

\( \Rightarrow \frac{{a - 300}}{{ - 500}} = \frac{{b - 100}}{{ - 200}} = \frac{{ - 100}}{{ - 150}} = \frac{2}{3} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{{100}}{3}}\\{b = - \frac{{100}}{3}}\end{array}} \right.\).

Suy ra \(M\left( { - \frac{{100}}{3}; - \frac{{100}}{3};0} \right)\).

Vậy khoảng cách từ vị trí người quan sát đến địa điểm xuất phát của hai chiếc flycam là: \(OM = \frac{{100\sqrt 2 }}{3} \approx 47\).

Đáp án : 47.