Câu hỏi:

16/10/2025 97 Lưu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right): - x + 2y + z - 3 = 0\).

( a) Điểm \(A\left( {1;\, - 1;\, - 2} \right)\) nằm trên đường thẳng \(d\).

(b) Mặt phẳng \(\left( Q \right)\) song song với đường thẳng \(d\) và vuông góc với mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến là \(\left( {1;\,1;\, - 1} \right)\).

(c)Góc giữa đường thẳng \(d\) và mặt phẳng \(\left( P \right)\) bằng \(30^\circ \).

(d) Đường thẳng \(\Delta \) đi qua điểm \(M\left( { - 3;\,1;\,2} \right)\), song song với mặt phẳng \(\left( P \right)\) và cắt đường thẳng \(d\) tại điểm \(N\left( {a;\,b;\,c} \right)\). Giá trị \(a + b + c\) bằng 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Điểm \(A\left( {1;\, - 1;\, - 2} \right)\) không nằm đường thẳng \(d\) vì \(\frac{{1 - 1}}{2} = \frac{{ - 1 + 1}}{{ - 1}} \ne \frac{{ - 2 - 2}}{1}\).

b) Đúng.Đường thẳng \(d\) có 1 vectơ chỉ phương là \({\overrightarrow u _d} = \left( {2;\, - 1;\,1} \right)\) và mặt phẳng \(\left( P \right)\) có 1 vectơ pháp tuyến là \({\overrightarrow n _{\left( P \right)}} = \left( { - 1;\,2;\,1} \right)\).

Mặt phẳng \(\left( Q \right)\) có 1 vectơ pháp tuyến là \({\overrightarrow n _{\left( Q \right)}} = \left[ {{{\overrightarrow n }_{\left( P \right)}},\,{{\overrightarrow u }_d}} \right] = \left( {1;\,1;\, - 1} \right)\).

c) Đúng. Ta có \(\sin \left( {d,\left( P \right)} \right) = \frac{{\left| {{{\overrightarrow u }_d} \cdot {{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_d}} \right| \cdot \left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{3}{{\sqrt 6 \cdot \sqrt 6 }} = \frac{1}{2}\).

Suy ra \(\left( {d,\left( P \right)} \right) = 30^\circ \).

d) Sai. \(N = \Delta \cap d\).

\(N \in d \Rightarrow N\left( {1 + 2t;\, - 1 - t;\,2 + t} \right)\).

\(\Delta \) có 1 vectơ chỉ phương là \(\overrightarrow {MN} = \left( {2t + 4;\, - t - 2;\,t} \right)\).

Ta có \(\Delta \)song song với mặt phẳng \(\left( P \right)\)

Suy ra \(\overrightarrow {MN} \bot {\overrightarrow n _{\left( P \right)}}\)

\( \Rightarrow \overrightarrow {MN} \cdot {\overrightarrow n _{\left( P \right)}} = 0\)\( \Rightarrow \left( {2t + 4} \right) \cdot \left( { - 1} \right) + \left( { - t - 2} \right) \cdot 2 + t \cdot 1 = 0\)

Suy ra \(t = - \frac{8}{3}\).

Vậy \(N\left( { - \frac{{13}}{3};\frac{5}{3};\, - \frac{2}{3}} \right)\).

Suy ra \(a + b + c = - \frac{{13}}{3} + \frac{5}{3} - \frac{2}{3} = - \frac{{10}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Ta có \(AB\) ngắn nhất khi \(AB\) là đoạn vuông góc chung của \({d_1}\) và \({d_2}\).

Gọi \(A\left( {2 + a;2 + a; - a} \right) \in {d_1};\,\,B\left( {2 + b; - 1 + 2b; - 3b} \right) \in {d_2}\)\( \Rightarrow \overrightarrow {AB} \left( {b - a;2b - a - 3; - 3b + a} \right)\).

\({d_1},\,{d_2}\) lần lượt có các véc tơ chỉ phương là \({\vec u_{{d_1}}} = \left( {1;1; - 1} \right)\) và \({\vec u_{{d_2}}} = \left( {1;2; - 3} \right)\)

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {AB} .{{\vec u}_{{d_1}}} = 0\\\overrightarrow {AB} .{{\vec u}_{{d_2}}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1\left( {b - a} \right) + 1\left( {2b - a - 3} \right) - 1\left( { - 3b + a} \right) = 0\\1\left( {b - a} \right) + 2\left( {2b - a - 3} \right) - 3\left( { - 3b + a} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6b - 3a - 3 = 0\\14b - 6a - 6 = 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;1;1} \right)\\B\left( {2; - 1;0} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} = \left( {1; - 2; - 1} \right)\]

Do đó \[\left| {\overrightarrow {AB} } \right| = \sqrt 6 \approx 2,45\].

Đáp án: 2,45.

Câu 5

Một khu bảo tồn thiên nhiên có hai trạm kiểm lâm và một trạm quan sát. Trong hệ toạ độ \(Oxyz\) (đơn vị độ dài trên mỗi trục là kilômét), hai trạm kiểm lâm và trạm quan sát có vị trí lần lượt là \(A\left( {10;5;0} \right)\), \(B\left( {70;85;0} \right)\) và \(I\left( {20;65;0,2} \right)\). Một thiết bị bay không người lái (drone) được thiết kế bay trên đường thẳng đi qua hai điểm \(C\left( {10;5;0,1} \right)\) và \(D\left( {70;85;0,1} \right)\) để truyền tín hiệu và dữ liệu về trạm quan sát \(I\).

(a)Khi tín hiệu gửi về trạm quan sát nhanh nhất thì vị trí của drone là \[K\left( {\frac{{212}}{5};\frac{{241}}{5};0,1} \right)\].

(b)Cùng một thời điểm, một xe máy xuất phát từ \(A\) đi đến \(B\) với vận tốc \(40\)km/h và một ô tô xuất phát từ \(B\) đi đến \(A\) với vận tốc \(60\)km/h, sau đó gặp nhau tại \(M\). Drone phải di chuyển trước đến vị trí \(H\) có hình chiếu trên \[AB\] là \(M\)để truyền dữ liệu về trạm quan sát \(I\). Khi đó vị trí của drone là \[\left( {34;37;0,1} \right)\].

(c)Trạm quan sát \(I\) nhìn đoạn thẳng \(AB\) dưới một góc nhỏ hơn \(65^\circ \).

(d)Phương trình đường thẳng mô tả cho tuyến đường bay của drone là \(\left\{ {\begin{array}{*{20}{l}}{x = 10 + 3t}\\{y = 5 + 4t}\\{z = 0,1}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP