Câu hỏi:

16/10/2025 96 Lưu

Trong không gian với hệ tọa độ \[Oxyz\], một viên đạn được bắn ra từ vị trí \(A\left( {1;2;3} \right)\) hướng đến vị trí \(B\left( {0;1; - 6} \right)\), bia chắn là mặt phẳng \(\left( P \right):4x - y + 2z + 13 = 0\), đơn vị là kilômét.

(a) Điểm \(B\) thuộc mặt phẳng \(\left( P \right)\).

(b) Giả sử viên đạn chuyển động thẳng đều theo hướng vectơ \(\vec v = \left( { - 2; - 2; - 18} \right)\) với vận tốc 800 m/s (bỏ qua mọi lực cản và chướng ngại vật), sau một phút viên đạn bắn ra đi qua điểm \(B\).

(c) Góc giữa đường thẳng \[AB\] và mặt phẳng \(\left( P \right)\) (làm tròn đến hàng đơn vị) là \(60^\circ \).

(d) Hình chiếu vuông góc của \(A\) trên \[\left( {Oxy} \right)\] là \(H\left( {0;2;3} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có: \(4.0 - 1 + 2.\left( { - 6} \right) + 13 = 0\) \( \Rightarrow B \in \left( P \right)\).

b) Đúng. \(\overrightarrow {AB} = \left( { - 1; - 1; - 9} \right)\).

Ta thấy \(\overrightarrow v = 2\overrightarrow {AB} \) \( \Rightarrow \) Hướng chuyển động theo vectơ \(\overrightarrow v \) chính là hướng chuyển động từ \(A\) đến \(B\).

\(AB = \sqrt {{1^2} + {1^2} + {9^2}} = \sqrt {83} \left( {{\rm{km}}} \right) = 1000\sqrt {83} \left( {\rm{m}} \right)\).

Suy ra thời gian viên đạn bay từ \(A\) đến \(B\) là: \(\frac{{AB}}{{800}} = \frac{{5\sqrt {83} }}{4} \approx 11,39\) giây.

Do đó sau 1 phút viên đạn đã đi qua điểm \(B\).

c) Sai. \(\overrightarrow {BA} = \left( {1;1;9} \right)\); \(\overrightarrow {{n_{\left( P \right)}}} = \left( {4; - 1;2} \right)\).

\[\sin \left( {AB,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow {BA} ,\overrightarrow {{n_{\left( P \right)}}} } \right)} \right| = \frac{{\left| {\overrightarrow {BA} .\overrightarrow {{n_{\left( P \right)}}} } \right|}}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {{n_{\left( P \right)}}} } \right|}} = \frac{{\left| {4 - 1 + 18} \right|}}{{\sqrt {83} .\sqrt {21} }} = \frac{{\sqrt {1743} }}{{83}}\]\( \Rightarrow \widehat {\left( {AB,\left( P \right)} \right)} \approx 30^\circ \).

d) Sai. Hình chiếu vuông góc của \(A\) trên \(\left( {Oxy} \right)\) là \(H\left( {1;2;0} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Chọn hệ trục Oxyz với gốc \(O\) đặt tại điểm xuất phát của hai flycam, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo mét.

Gọi \(A,B,M\) lần lượt là vị trí của flycam thứ nhất, flycam thứ hai và người quan sát.

Khi đó \(A\left( {300;100;100} \right),B\left( { - 200; - 100;50} \right),M\left( {a;b;0} \right)\).

Gọi \(B'\) là điểm đối xứng của \(B\) qua mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(B'\left( { - 200; - 100; - 50} \right)\).

Ta có \(MA + MB = MA + MB' \ge AB'\).

Do đó \(MA + MB\) nhỏ nhất khi bằng \(AB'\) hay \(M\) là giao điểm của \(AB'\) với mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(A,B',M\) thẳng hàng hay \(\overrightarrow {AM} ,\overrightarrow {AB'} \) cùng phương.

Có \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AM} = \left( {a - 300;b - 100; - 100} \right)}\\{\overrightarrow {AB'} \left( { - 500; - 200; - 150} \right)}\end{array}} \right.\).

\( \Rightarrow \frac{{a - 300}}{{ - 500}} = \frac{{b - 100}}{{ - 200}} = \frac{{ - 100}}{{ - 150}} = \frac{2}{3} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{{100}}{3}}\\{b = - \frac{{100}}{3}}\end{array}} \right.\).

Suy ra \(M\left( { - \frac{{100}}{3}; - \frac{{100}}{3};0} \right)\).

Vậy khoảng cách từ vị trí người quan sát đến địa điểm xuất phát của hai chiếc flycam là: \(OM = \frac{{100\sqrt 2 }}{3} \approx 47\).

Đáp án : 47.