Một mái nhà hình tròn được đặt trên ba cây cột trụ. Các cây cột trụ vuông góc với mặt sàn nhà phẳng và có độ cao lần lượt là \[8{\rm{m}},\,9{\rm{m}},\,10{\rm{m}}\]. Ba chân cột là ba đỉnh của một tam giác đều trên mặt sàn nhà với cạnh dài 8 m. Chọn hệ trục tọa độ như hình vẽ với \(B \in Ox\), \(C \in Oy\), tia \(Oz\) cùng hướng với vectơ \(\overrightarrow {AA'} \). Chọn gốc tọa độ \(O\) trùng với trung điểm của \(AC\) và mỗi đơn vị trên trục có độ dài 1m (xem hình vẽ).

(a) Tọa độ các điểm \(A'\left( {0; - 4;10} \right),B'\left( {4\sqrt 3 ;0;9} \right),C'\left( {0;4;8} \right)\).
(b) Mặt phẳng \(\left( {ABC} \right)\) nhận \(\overrightarrow k = \left( {0;\,1;\,1} \right)\)làm vectơ pháp tuyến.
(c) Mặt phẳng \(\left( {A'B'C'} \right)\) nhận \(\overrightarrow n = \left( {0;1;4} \right)\)làm vectơ pháp tuyến.
(d) Biết độ dốc của mái nhà đạt mức tiêu chuẩn khoảng từ \(27^\circ \) đến \(35^\circ \) thì mái nhà trên có độ dốc ở mức tiêu chuẩn.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 5 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng . \(A\left( {0; - 4;0} \right),B\left( {4\sqrt 3 ;0;0} \right),C\left( {0;4;0} \right)\) và \(A'\left( {0; - 4;10} \right),B'\left( {4\sqrt 3 ;0;9} \right),C'\left( {0;4;8} \right)\).
b) Sai . Vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là \(\overrightarrow k = \left( {0;\,0;\,1} \right).\)
c) Đúng. \[\overrightarrow {A'B'} = \left( {4\sqrt 3 ;4; - 1} \right);\overrightarrow {A'C'} = \left( {0;8; - 2} \right)\], khi đó vectơ pháp tuyến của \(\left( {A'B'C'} \right)\) là:
\(\overrightarrow n = \left[ {\overrightarrow {A'B'} ,\,\overrightarrow {A'C'} } \right] = \left( {0;\,8\sqrt 3 ;\,32\sqrt 3 } \right) = 8\sqrt 3 \left( {0;\,1;\,4} \right)\).
Vậy vectơ pháp tuyến của mặt phẳng \(\left( {A'B'C'} \right)\) là: \(\overrightarrow n = \left( {0;1;4} \right)\).
d) Sai. Vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là: \(\overrightarrow k = \left( {0;\,0;\,1} \right)\).
Khi đó: \[\cos \left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = \frac{{\left| 4 \right|}}{{\sqrt {{4^2} + {1^2}} }} = \frac{{4\sqrt {17} }}{{17}}\] nên \(\left( {\left( {ABC} \right),\,\left( {A'B'C'} \right)} \right) \approx 14^\circ \) nên mái nhà không ở mức tiêu chuẩn.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Chọn hệ trục Oxyz với gốc \(O\) đặt tại điểm xuất phát của hai flycam, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo mét.
Gọi \(A,B,M\) lần lượt là vị trí của flycam thứ nhất, flycam thứ hai và người quan sát.
Khi đó \(A\left( {300;100;100} \right),B\left( { - 200; - 100;50} \right),M\left( {a;b;0} \right)\).
Gọi \(B'\) là điểm đối xứng của \(B\) qua mặt phẳng \(\left( {Oxy} \right)\).
Suy ra \(B'\left( { - 200; - 100; - 50} \right)\).
Ta có \(MA + MB = MA + MB' \ge AB'\).
Do đó \(MA + MB\) nhỏ nhất khi bằng \(AB'\) hay \(M\) là giao điểm của \(AB'\) với mặt phẳng \(\left( {Oxy} \right)\).
Suy ra \(A,B',M\) thẳng hàng hay \(\overrightarrow {AM} ,\overrightarrow {AB'} \) cùng phương.
Có \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AM} = \left( {a - 300;b - 100; - 100} \right)}\\{\overrightarrow {AB'} \left( { - 500; - 200; - 150} \right)}\end{array}} \right.\).
\( \Rightarrow \frac{{a - 300}}{{ - 500}} = \frac{{b - 100}}{{ - 200}} = \frac{{ - 100}}{{ - 150}} = \frac{2}{3} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{{100}}{3}}\\{b = - \frac{{100}}{3}}\end{array}} \right.\).
Suy ra \(M\left( { - \frac{{100}}{3}; - \frac{{100}}{3};0} \right)\).
Vậy khoảng cách từ vị trí người quan sát đến địa điểm xuất phát của hai chiếc flycam là: \(OM = \frac{{100\sqrt 2 }}{3} \approx 47\).
Đáp án : 47.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


