Một mái nhà hình tròn được đặt trên ba cây cột trụ. Các cây cột trụ vuông góc với mặt sàn nhà phẳng và có độ cao lần lượt là \[8{\rm{m}},\,9{\rm{m}},\,10{\rm{m}}\]. Ba chân cột là ba đỉnh của một tam giác đều trên mặt sàn nhà với cạnh dài 8 m. Chọn hệ trục tọa độ như hình vẽ với \(B \in Ox\), \(C \in Oy\), tia \(Oz\) cùng hướng với vectơ \(\overrightarrow {AA'} \). Chọn gốc tọa độ \(O\) trùng với trung điểm của \(AC\) và mỗi đơn vị trên trục có độ dài 1m (xem hình vẽ).

(a) Tọa độ các điểm \(A'\left( {0; - 4;10} \right),B'\left( {4\sqrt 3 ;0;9} \right),C'\left( {0;4;8} \right)\).
(b) Mặt phẳng \(\left( {ABC} \right)\) nhận \(\overrightarrow k = \left( {0;\,1;\,1} \right)\)làm vectơ pháp tuyến.
(c) Mặt phẳng \(\left( {A'B'C'} \right)\) nhận \(\overrightarrow n = \left( {0;1;4} \right)\)làm vectơ pháp tuyến.
(d) Biết độ dốc của mái nhà đạt mức tiêu chuẩn khoảng từ \(27^\circ \) đến \(35^\circ \) thì mái nhà trên có độ dốc ở mức tiêu chuẩn.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 5 có đáp án !!
Quảng cáo
Trả lời:
a) Đúng . \(A\left( {0; - 4;0} \right),B\left( {4\sqrt 3 ;0;0} \right),C\left( {0;4;0} \right)\) và \(A'\left( {0; - 4;10} \right),B'\left( {4\sqrt 3 ;0;9} \right),C'\left( {0;4;8} \right)\).
b) Sai . Vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là \(\overrightarrow k = \left( {0;\,0;\,1} \right).\)
c) Đúng. \[\overrightarrow {A'B'} = \left( {4\sqrt 3 ;4; - 1} \right);\overrightarrow {A'C'} = \left( {0;8; - 2} \right)\], khi đó vectơ pháp tuyến của \(\left( {A'B'C'} \right)\) là:
\(\overrightarrow n = \left[ {\overrightarrow {A'B'} ,\,\overrightarrow {A'C'} } \right] = \left( {0;\,8\sqrt 3 ;\,32\sqrt 3 } \right) = 8\sqrt 3 \left( {0;\,1;\,4} \right)\).
Vậy vectơ pháp tuyến của mặt phẳng \(\left( {A'B'C'} \right)\) là: \(\overrightarrow n = \left( {0;1;4} \right)\).
d) Sai. Vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là: \(\overrightarrow k = \left( {0;\,0;\,1} \right)\).
Khi đó: \[\cos \left( {\left( {ABC} \right),\left( {A'B'C'} \right)} \right) = \frac{{\left| 4 \right|}}{{\sqrt {{4^2} + {1^2}} }} = \frac{{4\sqrt {17} }}{{17}}\] nên \(\left( {\left( {ABC} \right),\,\left( {A'B'C'} \right)} \right) \approx 14^\circ \) nên mái nhà không ở mức tiêu chuẩn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:
\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)
\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)
\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)
\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)
Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).
Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).
Đáp án: 2.
Lời giải
Ta có \(AB\) ngắn nhất khi \(AB\) là đoạn vuông góc chung của \({d_1}\) và \({d_2}\).
Gọi \(A\left( {2 + a;2 + a; - a} \right) \in {d_1};\,\,B\left( {2 + b; - 1 + 2b; - 3b} \right) \in {d_2}\)\( \Rightarrow \overrightarrow {AB} \left( {b - a;2b - a - 3; - 3b + a} \right)\).
\({d_1},\,{d_2}\) lần lượt có các véc tơ chỉ phương là \({\vec u_{{d_1}}} = \left( {1;1; - 1} \right)\) và \({\vec u_{{d_2}}} = \left( {1;2; - 3} \right)\)
Ta có: \[\left\{ \begin{array}{l}\overrightarrow {AB} .{{\vec u}_{{d_1}}} = 0\\\overrightarrow {AB} .{{\vec u}_{{d_2}}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1\left( {b - a} \right) + 1\left( {2b - a - 3} \right) - 1\left( { - 3b + a} \right) = 0\\1\left( {b - a} \right) + 2\left( {2b - a - 3} \right) - 3\left( { - 3b + a} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6b - 3a - 3 = 0\\14b - 6a - 6 = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;1;1} \right)\\B\left( {2; - 1;0} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} = \left( {1; - 2; - 1} \right)\]
Do đó \[\left| {\overrightarrow {AB} } \right| = \sqrt 6 \approx 2,45\].
Đáp án: 2,45.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


