Câu hỏi:

16/10/2025 12 Lưu

Một khu bảo tồn thiên nhiên có hai trạm kiểm lâm và một trạm quan sát. Trong hệ toạ độ \(Oxyz\) (đơn vị độ dài trên mỗi trục là kilômét), hai trạm kiểm lâm và trạm quan sát có vị trí lần lượt là \(A\left( {10;5;0} \right)\), \(B\left( {70;85;0} \right)\) và \(I\left( {20;65;0,2} \right)\). Một thiết bị bay không người lái (drone) được thiết kế bay trên đường thẳng đi qua hai điểm \(C\left( {10;5;0,1} \right)\) và \(D\left( {70;85;0,1} \right)\) để truyền tín hiệu và dữ liệu về trạm quan sát \(I\).

(a)Khi tín hiệu gửi về trạm quan sát nhanh nhất thì vị trí của drone là \[K\left( {\frac{{212}}{5};\frac{{241}}{5};0,1} \right)\].

(b)Cùng một thời điểm, một xe máy xuất phát từ \(A\) đi đến \(B\) với vận tốc \(40\)km/h và một ô tô xuất phát từ \(B\) đi đến \(A\) với vận tốc \(60\)km/h, sau đó gặp nhau tại \(M\). Drone phải di chuyển trước đến vị trí \(H\) có hình chiếu trên \[AB\] là \(M\)để truyền dữ liệu về trạm quan sát \(I\). Khi đó vị trí của drone là \[\left( {34;37;0,1} \right)\].

(c)Trạm quan sát \(I\) nhìn đoạn thẳng \(AB\) dưới một góc nhỏ hơn \(65^\circ \).

(d)Phương trình đường thẳng mô tả cho tuyến đường bay của drone là \(\left\{ {\begin{array}{*{20}{l}}{x = 10 + 3t}\\{y = 5 + 4t}\\{z = 0,1}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. \(\overrightarrow {CD} = \left( {60;80;0} \right) = 20.\left( {3;4;0} \right)\).

Phương trình đường thẳng \(CD:\left\{ \begin{array}{l}x = 10 + 3t\\y = 5 + 4t\\z = 0,1\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

Gọi \[K\] là hình chiếu của \(I\) lên đường thẳng \(CD\).

Ta có: \[K\left( {10 + 3t;5 + 4t;0,1} \right) \in CD\]

\(\overrightarrow {IK} = \left( {3t - 10;4t - 60; - 0,1} \right)\)

\(\overrightarrow {CD} \overrightarrow {.IK} = 0 \Leftrightarrow t = \frac{{54}}{5}\) nên \[K\left( {\frac{{212}}{5};\frac{{241}}{5};0,1} \right)\].

Vậy khi tín hiệu gửi về trạm quan sát nhanh nhất thì \(K\) là hình chiếu của \(I\) lên \(CD\) nên \[K\left( {\frac{{212}}{5};\frac{{241}}{5};0,1} \right)\].

b) Đúng. Ta có \(\overrightarrow {AB} = \left( {60;80;0} \right)\)\( \Rightarrow AB = 100\left( {{\rm{km}}} \right)\).

Gọi \(h\) (giờ) là thời gian hai xe xuất phát đến lúc gặp nhau.

Ta có \(40h + 60h = 100\)\( \Leftrightarrow h = 1\) (giờ).

Quảng đường \(AM = 40\,\left( {{\rm{km}}} \right)\) nên \(\overrightarrow {AM} = \frac{2}{5}\overrightarrow {AB} \) suy ra \(M\left( {34;37;0} \right)\).

\[H\left( {10 + 3t;5 + 4t;0,1} \right) \in CD\] và \(\overrightarrow {MH} = \left( {3t - 24;4t - 32;0,1} \right)\).

Do \(M\) là hình chiếu của \(H\) trên \(AB\) nên \(\overrightarrow {MH} .\overrightarrow {AB} = 0 \Leftrightarrow t = 8\).

Vậy \[H\left( {34;37;0,1} \right)\].

c) Sai. Ta có \(AB = 100\), \(IA = \frac{{\sqrt {92501} }}{5}\), \(IB = \frac{{\sqrt {72501} }}{5}\).

Xét tam giác \(IAB\) có: \(\cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2.IA.IB}} \approx - 0,51896\) nên \(\widehat {AIB} \approx 121^\circ \).

d) Đúng. \(\overrightarrow {CD} = \left( {60;80;0} \right) = 20\left( {3;4;0} \right)\).

Phương trình đường thẳng \(CD:\left\{ \begin{array}{l}x = 10 + 3t\\y = 5 + 4t\\z = 0,1\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

Nên phương trình đường thẳng mô tả cho tuyến đường bay của drone là \(\left\{ {\begin{array}{*{20}{l}}{x = 10 + 3t}\\{y = 5 + 4t}\\{z = 0,1}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).

Đáp án: 44 .