Câu hỏi:

16/10/2025 128 Lưu

Với hệ trục tọa độ \(Oxyz\) sao cho \(O\) nằm trên mặt nước, mặt phẳng \(\left( {Oxy} \right)\) là mặt nước, trục \(Oz\) hướng lên trên (đơn vị đo: mét), một con chim bói cá đang săn mồi ở vị trí \[C\] cách mặt nước \[5\,\,{\rm{m,}}\] cách mặt phẳng \(\left( {Oxz} \right),\left( {Oyz} \right)\) lần lượt là \(6\,\,{\rm{m}}\) và \(2\,{\rm{m}}\), từ vị trí này nó phóng thẳng xuống vị trí con cá ở vị trí \[A\], biết con cá cách mặt nước \(50\,\,{\rm{cm,}}\)cách mặt phẳng \(\left( {Oxz} \right),\left( {Oyz} \right)\) lần lượt là \(1\,{\rm{m}}\) và \(1,5\,{\rm{m}}\) (tham khảo hình vẽ).

Với hệ trục tọa độ  O x y z  sao cho  O  nằm trên mặt nước, mặt phẳng  ( O x y )  là mặt nước, trục  O z  hướng lên trên (đơn vị đo: mét), một con chim bói cá đang săn mồi ở vị trí  C  cách mặt nước  5 m (ảnh 1)

Giả sử vận tốc của con chim bói cá là \(4\,\,{\rm{m/s}}\), hỏi sau bao nhiêu giây thì nó chạm tới mặt nước (làm tròn đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1,69

Gọi vị trí của con chim bói cá ban đầu là \(C\) và vị trí của con cá là \(A\).

Khi đó ta có \(C\left( {2;6;5} \right)\) và \(A\left( {1,5\,;1\,; - 0,5} \right).\)

Điểm \(B\) lúc chim bói cá tiếp xúc với mặt nước là giao điểm của đường thẳng \(AC\) và \(\left( {Oxy} \right)\).

Đường thẳng \(AC\) đi qua điểm \(C\left( {2;6;5} \right)\) có vectơ chỉ phương là \(\overrightarrow {AC} = \left( { - 0,5;\, - 5; - 5,5} \right),\) chọn \(\vec u = \left( { - 1; - 10; - 11} \right).\)

Khi đó phương trình của \(AC:\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\end{array} \right.\).

Phương trình của \(\left( {Oxy} \right)\) là \(z = 0.\)

Tọa độ điểm \(B\) là nghiệm \(\left( {x;y;z} \right)\)của hệ: \(\left\{ \begin{array}{l}x = 2 - t\\y = 6 - 10t\\z = 5 - 11t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{5}{{11}}\\x = \frac{{17}}{{11}}\\y = \frac{{16}}{{11}}\\z = 0\end{array} \right.\).

Suy ra \(B\left( {\frac{{17}}{{11}};\frac{{16}}{{11}};0} \right)\) , độ dài đoạn \(CB = \frac{{5\sqrt {222} }}{{11}}\).

Thời gian đi quãng đường \[BC\]là \[t = \frac{{BC}}{v} = \frac{{\frac{{5\sqrt {222} }}{{11}}}}{4} = \frac{{5\sqrt {222} }}{{44}} \approx 1,69\,\left( {\rm{s}} \right)\].

Vậy sau 1,69 giây thì chim bói cá chạm tới mặt nước.

Đáp án: 1,69.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Ta có \(AB\) ngắn nhất khi \(AB\) là đoạn vuông góc chung của \({d_1}\) và \({d_2}\).

Gọi \(A\left( {2 + a;2 + a; - a} \right) \in {d_1};\,\,B\left( {2 + b; - 1 + 2b; - 3b} \right) \in {d_2}\)\( \Rightarrow \overrightarrow {AB} \left( {b - a;2b - a - 3; - 3b + a} \right)\).

\({d_1},\,{d_2}\) lần lượt có các véc tơ chỉ phương là \({\vec u_{{d_1}}} = \left( {1;1; - 1} \right)\) và \({\vec u_{{d_2}}} = \left( {1;2; - 3} \right)\)

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {AB} .{{\vec u}_{{d_1}}} = 0\\\overrightarrow {AB} .{{\vec u}_{{d_2}}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1\left( {b - a} \right) + 1\left( {2b - a - 3} \right) - 1\left( { - 3b + a} \right) = 0\\1\left( {b - a} \right) + 2\left( {2b - a - 3} \right) - 3\left( { - 3b + a} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6b - 3a - 3 = 0\\14b - 6a - 6 = 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;1;1} \right)\\B\left( {2; - 1;0} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} = \left( {1; - 2; - 1} \right)\]

Do đó \[\left| {\overrightarrow {AB} } \right| = \sqrt 6 \approx 2,45\].

Đáp án: 2,45.

Câu 5

Một khu bảo tồn thiên nhiên có hai trạm kiểm lâm và một trạm quan sát. Trong hệ toạ độ \(Oxyz\) (đơn vị độ dài trên mỗi trục là kilômét), hai trạm kiểm lâm và trạm quan sát có vị trí lần lượt là \(A\left( {10;5;0} \right)\), \(B\left( {70;85;0} \right)\) và \(I\left( {20;65;0,2} \right)\). Một thiết bị bay không người lái (drone) được thiết kế bay trên đường thẳng đi qua hai điểm \(C\left( {10;5;0,1} \right)\) và \(D\left( {70;85;0,1} \right)\) để truyền tín hiệu và dữ liệu về trạm quan sát \(I\).

(a)Khi tín hiệu gửi về trạm quan sát nhanh nhất thì vị trí của drone là \[K\left( {\frac{{212}}{5};\frac{{241}}{5};0,1} \right)\].

(b)Cùng một thời điểm, một xe máy xuất phát từ \(A\) đi đến \(B\) với vận tốc \(40\)km/h và một ô tô xuất phát từ \(B\) đi đến \(A\) với vận tốc \(60\)km/h, sau đó gặp nhau tại \(M\). Drone phải di chuyển trước đến vị trí \(H\) có hình chiếu trên \[AB\] là \(M\)để truyền dữ liệu về trạm quan sát \(I\). Khi đó vị trí của drone là \[\left( {34;37;0,1} \right)\].

(c)Trạm quan sát \(I\) nhìn đoạn thẳng \(AB\) dưới một góc nhỏ hơn \(65^\circ \).

(d)Phương trình đường thẳng mô tả cho tuyến đường bay của drone là \(\left\{ {\begin{array}{*{20}{l}}{x = 10 + 3t}\\{y = 5 + 4t}\\{z = 0,1}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP