PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Biết \(F\left( x \right) = 3{x^2} + 2x - \ln x + C,x \in \left( {0; + \infty } \right)\) là nguyên hàm của hàm số \(f\left( x \right)\).
a) \(f\left( x \right) = 6x + 2 - \frac{1}{x},x \in \left( {0; + \infty } \right)\).
b) \(F\left( 1 \right) = 3\). Khi đó \(F\left( 2 \right) = 14 - \ln 2\).
c) \(f\left( 1 \right) = 1\).
d) Bất phương trình \(f\left( x \right) + \frac{1}{x} - 8 < 0\) có tập nghiệm là \(\left( { - \infty ;1} \right)\).
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Biết \(F\left( x \right) = 3{x^2} + 2x - \ln x + C,x \in \left( {0; + \infty } \right)\) là nguyên hàm của hàm số \(f\left( x \right)\).
a) \(f\left( x \right) = 6x + 2 - \frac{1}{x},x \in \left( {0; + \infty } \right)\).
b) \(F\left( 1 \right) = 3\). Khi đó \(F\left( 2 \right) = 14 - \ln 2\).
c) \(f\left( 1 \right) = 1\).
d) Bất phương trình \(f\left( x \right) + \frac{1}{x} - 8 < 0\) có tập nghiệm là \(\left( { - \infty ;1} \right)\).
Quảng cáo
Trả lời:

a) \(F'\left( x \right) = f\left( x \right) = 6x + 2 - \frac{1}{x}\).
b) Có \(F\left( 1 \right) = {3.1^2} + 2.1 - \ln 1 + C = 3 \Rightarrow C = - 2\).
Khi đó \(F\left( x \right) = 3{x^2} + 2x - \ln x - 2\). Khi đó \(F\left( 2 \right) = {3.2^2} + 2.2 - \ln 2 - 2 = 14 - \ln 2\).
c) \(f\left( 1 \right) = 6.1 + 2 - \frac{1}{1} = 7\).
d) \(f\left( x \right) + \frac{1}{x} - 8 < 0\)\( \Leftrightarrow 6x + 2 - \frac{1}{x} + \frac{1}{x} - 8 < 0\)\( \Leftrightarrow 6x - 6 < 0\)\( \Leftrightarrow x < 1\).
Vậy bất phương trình có tập nghiệm là \(\left( { - \infty ;1} \right)\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(B\left( t \right) = \int {\left( {4{t^3} - 3{t^2} + 200} \right)dt} = {t^4} - {t^3} + 200t + C\).
Mà \(B\left( 2 \right) = 1200\)\( \Rightarrow {2^4} - {2^3} + 200.2 + C = 1200 \Rightarrow C = 792\).
Khi đó \(B\left( t \right) = {t^4} - {t^3} + 200t + 792\).
Sau 6 giờ lượng khách tham quan là \(B\left( 6 \right) = {6^4} - {6^3} + 200.6 + 792 = 3072\) (khách).
Trả lời: 3072.
Câu 2
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {2^x}\), thỏa mãn \(F\left( 0 \right) = \frac{1}{{\ln 2}}\).
a) \(F'\left( x \right) = f\left( x \right)\).
b) \(\int {f\left( x \right)dx} = \int {{2^x}dx} = {2^x}\ln 2 + C\).
c) \(F\left( x \right) = \frac{{{2^x}}}{{\ln 2}}\).
d) \(T = F\left( 0 \right) + F\left( 1 \right) + ... + F\left( {2024} \right) + F\left( {2025} \right) = \frac{{{2^{2025}} - 1}}{{\ln 2}}\).
Lời giải
a) \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {2^x}\) nên \(F'\left( x \right) = f\left( x \right)\).
b) \(F\left( x \right) = \int {f\left( x \right)dx} = \int {{2^x}dx} = \frac{{{2^x}}}{{\ln 2}} + C\).
c) Vì \(F\left( 0 \right) = \frac{1}{{\ln 2}}\) nên \(\frac{1}{{\ln 2}} + C = \frac{1}{{\ln 2}} \Rightarrow C = 0\).
Do đó \(F\left( x \right) = \frac{{{2^x}}}{{\ln 2}}\).
d) Ta có \(F\left( 0 \right) = \frac{{{2^0}}}{{\ln 2}}\); \(F\left( 1 \right) = \frac{{{2^1}}}{{\ln 2}}\); …; \(F\left( {2024} \right) = \frac{{{2^{2024}}}}{{\ln 2}}\); \(F\left( {2025} \right) = \frac{{{2^{2025}}}}{{\ln 2}}\).
Khi đó \(T = F\left( 0 \right) + F\left( 1 \right) + ... + F\left( {2024} \right) + F\left( {2025} \right) = \)\[ = \frac{{{2^0}}}{{\ln 2}} + \frac{{{2^1}}}{{\ln 2}} + ... + \frac{{{2^{2024}}}}{{\ln 2}} + \frac{{{2^{2025}}}}{{\ln 2}}\]
\[ = \frac{1}{{\ln 2}}\left( {{2^0} + {2^1} + ... + {2^{2024}} + {2^{2025}}} \right)\]\[ = \frac{{{2^{2026}} - 1}}{{\ln 2}}\].
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.