Biết \(F\left( x \right) = \left( {a{x^2} + bx + c} \right)\sqrt {2x - 3} \) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{20{x^2} - 30x + 7}}{{\sqrt {2x - 3} }}\) trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\). Tính \(P = abc\).
Biết \(F\left( x \right) = \left( {a{x^2} + bx + c} \right)\sqrt {2x - 3} \) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{20{x^2} - 30x + 7}}{{\sqrt {2x - 3} }}\) trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\). Tính \(P = abc\).
Quảng cáo
Trả lời:
Theo đề ta có \(F'\left( x \right) = f\left( x \right)\).
Ta có \(F'\left( x \right) = \left( {2ax + b} \right)\sqrt {2x - 3} + \left( {a{x^2} + bx + c} \right).\frac{1}{{\sqrt {2x - 3} }}\)\( = \frac{{\left( {2ax + b} \right).\left( {2x - 3} \right) + \left( {a{x^2} + bx + c} \right)}}{{\sqrt {2x - 3} }}\)
\( = \frac{{5a{x^2} + \left( { - 6a + 3b} \right)x + \left( { - 3b + c} \right)}}{{\sqrt {2x - 3} }}\).
Vì \(F'\left( x \right) = f\left( x \right)\) nên \(\left\{ \begin{array}{l}5a = 20\\ - 6a + 3b = - 30\\ - 3b + c = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = - 2\\c = 1\end{array} \right. \Rightarrow P = - 8\).
Trả lời: −8.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(v\left( t \right) = \int {a\left( t \right)dt} = \int {4\cos t} dt = 4\sin t + C\).
Mà \(v\left( 0 \right) = 0 \Rightarrow 4\sin 0 + C = 0 \Rightarrow C = 0\).
Khi đó \(v\left( t \right) = 4\sin t\) m/s.
b) \(v\left( {\frac{\pi }{6}} \right) = 4\sin \frac{\pi }{6} = 2\) m/s.
c) \(v\left( {\frac{\pi }{4}} \right) = 4\sin \frac{\pi }{4} = 2\sqrt 2 \) m/s.
d) \(a\left( {\frac{\pi }{4}} \right) = 4\cos \frac{\pi }{4} = 2\sqrt 2 \) m/s2.
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Lời giải
a) \(F'\left( x \right) = f\left( x \right) = 6x + 2 - \frac{1}{x}\).
b) Có \(F\left( 1 \right) = {3.1^2} + 2.1 - \ln 1 + C = 3 \Rightarrow C = - 2\).
Khi đó \(F\left( x \right) = 3{x^2} + 2x - \ln x - 2\). Khi đó \(F\left( 2 \right) = {3.2^2} + 2.2 - \ln 2 - 2 = 14 - \ln 2\).
c) \(f\left( 1 \right) = 6.1 + 2 - \frac{1}{1} = 7\).
d) \(f\left( x \right) + \frac{1}{x} - 8 < 0\)\( \Leftrightarrow 6x + 2 - \frac{1}{x} + \frac{1}{x} - 8 < 0\)\( \Leftrightarrow 6x - 6 < 0\)\( \Leftrightarrow x < 1\).
Vậy bất phương trình có tập nghiệm là \(\left( { - \infty ;1} \right)\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {2^x}\), thỏa mãn \(F\left( 0 \right) = \frac{1}{{\ln 2}}\).
a) \(F'\left( x \right) = f\left( x \right)\).
b) \(\int {f\left( x \right)dx} = \int {{2^x}dx} = {2^x}\ln 2 + C\).
c) \(F\left( x \right) = \frac{{{2^x}}}{{\ln 2}}\).
d) \(T = F\left( 0 \right) + F\left( 1 \right) + ... + F\left( {2024} \right) + F\left( {2025} \right) = \frac{{{2^{2025}} - 1}}{{\ln 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.