Biết \(F\left( x \right) = \left( {a{x^2} + bx + c} \right)\sqrt {2x - 3} \) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{20{x^2} - 30x + 7}}{{\sqrt {2x - 3} }}\) trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\). Tính \(P = abc\).
Biết \(F\left( x \right) = \left( {a{x^2} + bx + c} \right)\sqrt {2x - 3} \) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{{20{x^2} - 30x + 7}}{{\sqrt {2x - 3} }}\) trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\). Tính \(P = abc\).
Quảng cáo
Trả lời:

Theo đề ta có \(F'\left( x \right) = f\left( x \right)\).
Ta có \(F'\left( x \right) = \left( {2ax + b} \right)\sqrt {2x - 3} + \left( {a{x^2} + bx + c} \right).\frac{1}{{\sqrt {2x - 3} }}\)\( = \frac{{\left( {2ax + b} \right).\left( {2x - 3} \right) + \left( {a{x^2} + bx + c} \right)}}{{\sqrt {2x - 3} }}\)
\( = \frac{{5a{x^2} + \left( { - 6a + 3b} \right)x + \left( { - 3b + c} \right)}}{{\sqrt {2x - 3} }}\).
Vì \(F'\left( x \right) = f\left( x \right)\) nên \(\left\{ \begin{array}{l}5a = 20\\ - 6a + 3b = - 30\\ - 3b + c = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = - 2\\c = 1\end{array} \right. \Rightarrow P = - 8\).
Trả lời: −8.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(B\left( t \right) = \int {\left( {4{t^3} - 3{t^2} + 200} \right)dt} = {t^4} - {t^3} + 200t + C\).
Mà \(B\left( 2 \right) = 1200\)\( \Rightarrow {2^4} - {2^3} + 200.2 + C = 1200 \Rightarrow C = 792\).
Khi đó \(B\left( t \right) = {t^4} - {t^3} + 200t + 792\).
Sau 6 giờ lượng khách tham quan là \(B\left( 6 \right) = {6^4} - {6^3} + 200.6 + 792 = 3072\) (khách).
Trả lời: 3072.
Lời giải
Ta có \(F\left( x \right) = \int {\frac{1}{x}dx} = \ln \left| x \right| + C = \ln \left( { - x} \right) + C\) vì \(x \in \left( { - \infty ;0} \right)\).
Mà \(F\left( { - 2} \right) = 0\) nên \(\ln 2 + C = 0 \Rightarrow C = - \ln 2\). Do đó \(F\left( x \right) = \ln \left( { - x} \right) - \ln 2\).
a) \(F\left( { - 2e} \right) = \ln \left( {2e} \right) - \ln 2 = \ln 2 + 1 - \ln 2 = 1\).
b) \(F\left( { - 3} \right) = \ln 3 - \ln 2 = \ln \frac{3}{2}\).
c) \(f\left( { - 4} \right) = \frac{1}{{ - 4}} = - \frac{1}{4}\).
d) \(F'\left( { - 1} \right) = f\left( { - 1} \right) = - 1\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Câu 3
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {2^x}\), thỏa mãn \(F\left( 0 \right) = \frac{1}{{\ln 2}}\).
a) \(F'\left( x \right) = f\left( x \right)\).
b) \(\int {f\left( x \right)dx} = \int {{2^x}dx} = {2^x}\ln 2 + C\).
c) \(F\left( x \right) = \frac{{{2^x}}}{{\ln 2}}\).
d) \(T = F\left( 0 \right) + F\left( 1 \right) + ... + F\left( {2024} \right) + F\left( {2025} \right) = \frac{{{2^{2025}} - 1}}{{\ln 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.