Trong không gian Oxyz, cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - 2t\\z = t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = - 2t'\\y = - 5 + 3t'\\z = 4 + t'\end{array} \right.\). Xét vị trí tương đối giữa hai đường thẳng d và d'.
Quảng cáo
Trả lời:

Chọn D
Đường thẳng d có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 2;1} \right)\) và đi qua M(1; 2; 0).
Đường thẳng d' có vectơ chỉ phương \(\overrightarrow {u'} = \left( { - 2;3;1} \right)\) và đi qua M'(0; −5; 4).
Ta có \(\overrightarrow {MM'} = \left( { - 1; - 7;4} \right)\) và \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 5; - 4;2} \right)\).
Lại có \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} = \left( { - 1} \right).\left( { - 5} \right) + \left( { - 7} \right).\left( { - 4} \right) + 4.2 = 41 \ne 0\).
Suy ra d và d' chéo nhau.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vectơ chỉ phương của đường thẳng D1 là \(\overrightarrow u = \left( {0; - 3;4} \right)\).
b) Mặt phẳng (P) có 1 vectơ pháp tuyến \(\overrightarrow n = \left( {1;3; - 2} \right)\).
Vì d1 ^ (P) nên d1 nhận vectơ pháp tuyến \(\overrightarrow n = \left( {1;3; - 2} \right)\) làm một vectơ chỉ phương.
c) Mặt phẳng (Oxy) có 1 vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Đường thẳng D2 có vectơ chỉ phương là \(\overrightarrow v = \left( {3; - 3;2} \right)\).
Đường thẳng d2 vuông góc với D2 và song song với mặt phẳng (Oxy) có vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left[ {\overrightarrow v ,\overrightarrow k } \right] = \left( { - 3; - 3;0} \right) = - 3\left( {1;1;0} \right)\).
d) Gọi H = d3 Ç Oz. Ta có \(\left\{ \begin{array}{l}{d_3} \bot Oz\\A \in {d_3}\end{array} \right.\).
Suy ra H là hình chiếu của A lên Oz Þ H(0; 0; 2).
Vậy đường thẳng d3 có 1 vectơ chỉ phương là \(\overrightarrow {AH} = \left( { - 1;1;0} \right)\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Lời giải
Ta có A Î d Þ A(2t; −t; −1 + t), t > 0.
Vì \(d\left( {A,\left( \alpha \right)} \right) = 3\) nên \(\frac{{\left| {2t - 2\left( { - t} \right) - 2\left( { - 1 + t} \right) + 5} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3\) \( \Leftrightarrow \left| {2t + 7} \right| = 9\)\( \Leftrightarrow \left[ \begin{array}{l}2t + 7 = 9\\2t + 7 = - 9\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}t = 1\left( {TM} \right)\\t = - 8\left( {KTM} \right)\end{array} \right.\).
Vậy A(2; −1; 0) Þ a + b – c = 2 – 1 – 0 = 1.
Trả lời: 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.