Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x – 2y + 2z – 3 = 0 và đường thẳng \(d:\frac{x}{2} = \frac{y}{{ - 1}} = \frac{z}{1}\). Tính sin của góc giữa đường thẳng d và mặt phẳng (P).
Quảng cáo
Trả lời:

Chọn A
Mặt phẳng (P) nhận \(\overrightarrow n = \left( {1; - 2;2} \right)\) làm vectơ pháp tuyến và đường thẳng d nhận \(\overrightarrow u = \left( {2; - 1;1} \right)\) làm vectơ chỉ phương.
Ta có \(\sin \left( {d,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow u } \right)} \right| = \frac{{\left| {1.2 + \left( { - 2} \right).\left( { - 1} \right) + 2.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} .\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{6}{{3\sqrt 6 }} = \frac{{\sqrt 6 }}{3}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử đường thẳng d cắt đường thẳng D1 tại B, ta có \(B\left( {1 + 2t;2 + t; - 2 - t} \right) \in {\Delta _1}\).
Đường thẳng d có vectơ chỉ phương là \(\overrightarrow {AB} = \left( {2t + 2;t + 2; - t - 1} \right)\) mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( { - 1;2;2} \right)\).
Gọi φ là góc giữa d và (P), ta có \(\sin \varphi = \frac{{\left| { - 2t - 2 + 2t + 4 - 2t - 2} \right|}}{{3\sqrt {6{t^2} + 14t + 9} }} = \frac{{\left| {2t} \right|}}{{3\sqrt {6{t^2} + 14t + 9} }} \ge 0\).
Suy ra d tạo với mặt phẳng (P) một góc φ nhỏ nhất khi φ = 0° hay sinφ = 0 Þ t = 0.
Khi đó đường thẳng d đi qua điểm A và có vectơ chỉ phương \(\overrightarrow {AB} = \left( {2;2; - 1} \right)\).
Vậy \(a = 2;b = 2;c = - 1 \Rightarrow a + 2b - 3c = 2 + 2.2 - 3.\left( { - 1} \right) = 9\).
Trả lời: 9.
Câu 2
Khi gắn hệ tọa độ Oxyz (đơn vị trên mỗi trục tính theo kilômét) vào một sân bay, mặt phẳng (Oxy) trùng với mặt sân bay. Một máy bay bay theo đường thẳng từ vị trí A(2; −1; 3) đến vị trí B(8; 7; 1). Góc giữa đường bay (một phần của đường thẳng AB) và sân bay (một phần của mặt phẳng (Oxy)) bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?
Khi gắn hệ tọa độ Oxyz (đơn vị trên mỗi trục tính theo kilômét) vào một sân bay, mặt phẳng (Oxy) trùng với mặt sân bay. Một máy bay bay theo đường thẳng từ vị trí A(2; −1; 3) đến vị trí B(8; 7; 1). Góc giữa đường bay (một phần của đường thẳng AB) và sân bay (một phần của mặt phẳng (Oxy)) bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?
Lời giải
Đường thẳng AB có vectơ chỉ phương là \(\overrightarrow u = \left( {3;4; - 1} \right)\), mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến là \(\overrightarrow n = \left( {0;0;1} \right)\).
Góc α giữa đường bay (một phần của đường thẳng AB) và sân bay (một phần của mặt phẳng (Oxy)).
Ta có \(\sin \alpha = \frac{1}{{\sqrt {26} }} \Rightarrow \alpha \approx 11^\circ \).
Trả lời: 11.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.