Câu hỏi:

17/10/2025 66 Lưu

Trong không gian Oxyz, cho mặt cầu \((S):{\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 4\). Tọa độ tâm I và bán kính R của mặt cầu (S) lần lượt là 

A. \(I\left( { - 1;0;3} \right),R = 4\).                          
B. \(I\left( {1;0;3} \right),R = 4\).          
C. \(I\left( { - 1;0;3} \right),R = 2\).                                          
D. \(I\left( {1;0;3} \right),R = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

\(I\left( { - 1;0;3} \right),R = 2\) lần lượt là tâm và bán kính của mặt cầu (S).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

M chính là giao điểm của đường thẳng AB và mặt phẳng (Oxy).

Ta có \(\overrightarrow {AB}  = \left( {5;10; - 2} \right)\).

Đường thẳng AB đi qua điểm A(5; 0; 5) và nhận \(\overrightarrow {AB}  = \left( {5;10; - 2} \right)\)làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 5 + 5t\\y = 10t\\z = 5 - 2t\end{array} \right.\).

Vì M Î (Oxy) Þ z = 0 Þ 5 – 2t = 0 \( \Leftrightarrow t = \frac{5}{2}\).

Với \(t = \frac{5}{2}\) thì \(\left\{ \begin{array}{l}x = \frac{{35}}{2}\\y = 25\\z = 0\end{array} \right.\) \( \Rightarrow M\left( {\frac{{35}}{2};25;0} \right)\).

Suy ra \(a = \frac{{35}}{2};b = 25\). Do đó \(a + b = \frac{{35}}{2} + 25 = 42,5\).

Trả lời: 42,5.

Lời giải

Mặt phẳng (Oxy) có vectơ pháp tuyến \(\overrightarrow k  = \left( {0;0;1} \right)\).

Khi đó \(\sin \gamma  = \frac{{\left| {40} \right|}}{{\sqrt {{{150}^2} + {{150}^2} + {{40}^2}} }} = \frac{4}{{\sqrt {466} }}\) \( \Rightarrow \gamma  \approx 11^\circ \).

Trả lời: 11.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[Q\left( {1; - 2; - 1} \right)\].                               
B. \[A\left( {1;2;1} \right)\].                    
C. \[N\left( { - 1;3;2} \right)\].                                
D. \[P\left( { - 1;2;1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP