Câu hỏi:

17/10/2025 16 Lưu

Trong không gian Oxyz, cho mặt phẳng (P): \(2x + 2y - z + 3 = 0\) và các điểm \(A\left( {1;2;3} \right),B\left( {0; - 1;2} \right),C\left( {1;3; - 2} \right)\).

a) Điểm B cách mặt phẳng (P) một khoảng bằng 3.

b) Mặt phẳng (Q) đi qua điểm B và song song với mặt phẳng (P) có phương trình là \(2x + 2y - z - 4 = 0\).

c) Đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P) có phương trình tham số là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 2t\\z = 3 - t\end{array} \right.\).

d) Gọi H(a; b; c) là hình chiếu vuông góc của điểm C lên mặt phẳng (P). Khi đó giá trị của biểu thức \(T = a - b + 9c\) bằng −4.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(d\left( {B,\left( P \right)} \right) = \frac{{\left| {2.0 + 2.\left( { - 1} \right) - 2 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{1}{3}\).

b) Có \(\overrightarrow {{n_P}}  = \left( {2;2; - 1} \right)\) là một vectơ pháp tuyến của mặt phẳng (P).

Mặt phẳng (Q) đi qua điểm B và song song với mặt phẳng (P) nhận \(\overrightarrow {{n_P}}  = \left( {2;2; - 1} \right)\)làm vectơ pháp tuyến có phương trình là \(2x + 2\left( {y + 1} \right) - \left( {z - 2} \right) = 0 \Leftrightarrow 2x + 2y - z + 4 = 0\).

c) Đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P) nhận \(\overrightarrow {{n_P}}  = \left( {2;2; - 1} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 2t\\z = 3 - t\end{array} \right.\).

d) Gọi d là đường thẳng đi qua C và vuông góc với (P) có phương trình là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + 2t\\z =  - 2 - t\end{array} \right.\).

Gọi H = d Ç (P).

Vì H Î d Þ \(H\left( {1 + 2t;3 + 2t; - 2 - t} \right)\).

Mà H Î (P) nên \(2 + 4t + 6 + 4t + 2 + t + 3 = 0\)\( \Leftrightarrow t =  - \frac{{13}}{9}\).

Suy ra \(H\left( { - \frac{{17}}{9};\frac{1}{9}; - \frac{5}{9}} \right)\).

Suy ra \(a =  - \frac{{17}}{9};b = \frac{1}{9};c =  - \frac{5}{9}\). Khi đó \(T = a - b + 9c =  - \frac{{17}}{9} - \frac{1}{9} + 9.\left( {\frac{{ - 5}}{9}} \right) =  - 7\).

Đáp án: a) Sai;   b) Sai;   c) Đúng;  d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mặt phẳng (Oxy) có vectơ pháp tuyến \(\overrightarrow k  = \left( {0;0;1} \right)\).

Khi đó \(\sin \gamma  = \frac{{\left| {40} \right|}}{{\sqrt {{{150}^2} + {{150}^2} + {{40}^2}} }} = \frac{4}{{\sqrt {466} }}\) \( \Rightarrow \gamma  \approx 11^\circ \).

Trả lời: 11.

Lời giải

a) \(M\left( {1;0;0} \right)\).

b) \(N\left( {0;0;1} \right)\).

c) Mặt phẳng (DMN) có phương trình là \(\frac{x}{1} + \frac{y}{2} + \frac{z}{1} = 1 \Leftrightarrow 2x + y + 2z - 2 = 0\).

d) Ta có \(C'\left( {2;2;2} \right)\).

Khi đó \(d\left( {C',\left( {DMN} \right)} \right) = \frac{{\left| {2.2 + 2 + 2.2 - 2} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} }} = \frac{8}{3}\).

Đáp án: a) Đúng;   b) Sai;   c) Đúng;  d) Đúng.

Câu 3

Trong không gian Oxyz, cho hai mặt phẳng \((P):y = 0,\;\;(Q):\sqrt 3 x - y - 2024 = 0.\) Xét các vectơ \({\vec n_1} = (0;\;1;\;0),\;\;{\vec n_2} = (\sqrt 3 ;\; - 1;\;0).\)

a) \({\vec n_1}\) là một vectơ pháp tuyến của mặt phẳng \((P).\)

b) \({\vec n_2}\) không là vectơ pháp tuyến của mặt phẳng \((Q).\)

c) \({\vec n_1}.{\vec n_2} = - 1.\)

d) Mặt phẳng \((R)\)đi qua điểm \(M(1;1;1)\) và vuông góc \((P),(Q)\)có phương trình là\(\sqrt 3 x + y - z - \sqrt 3 = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} + 1 = 0.\) 
B. \(\frac{x}{3} + \frac{y}{2} + \frac{z}{7} = 1.\)                                    
C. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} = 1.\)                                        
D. \(\frac{x}{3} - \frac{y}{2} + \frac{z}{7} = 1.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong không gian \(Oxyz,\) đường thẳng đi qua điểm \(I(15;\;\; - 16;\;\;17)\) và nhận \(\vec u = ( - 7;\;\;8;\;\; - 9)\) là vectơ chỉ phương có phương trình tham số là: 

A. \(\left\{ {\begin{array}{*{20}{l}}{x = 15 - 7t}\\{y = - 16 + 8t}\\{z = 17 - 9t}\end{array}} \right..\)                                      
B. \(\left\{ {\begin{array}{*{20}{l}}{x = 15 - 7t}\\{y = - 16 + 8t}\\{z = 17 - 9{t^2}}\end{array}} \right..\)                                         
C. \(\left\{ {\begin{array}{*{20}{l}}{x = 15 - 7{t^2}}\\{y = - 16 + 8t}\\{z = 17 - 9t}\end{array}} \right..\)      
D. \(\left\{ {\begin{array}{*{20}{l}}{x = - 7 + 15t}\\{y = 8 - 16t}\\{z = - 9 + 17t}\end{array}} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP