Trong không gian Oxyz, cho mặt phẳng (P): \(2x + 2y - z + 3 = 0\) và các điểm \(A\left( {1;2;3} \right),B\left( {0; - 1;2} \right),C\left( {1;3; - 2} \right)\).
a) Điểm B cách mặt phẳng (P) một khoảng bằng 3.
b) Mặt phẳng (Q) đi qua điểm B và song song với mặt phẳng (P) có phương trình là \(2x + 2y - z - 4 = 0\).
c) Đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P) có phương trình tham số là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 2t\\z = 3 - t\end{array} \right.\).
d) Gọi H(a; b; c) là hình chiếu vuông góc của điểm C lên mặt phẳng (P). Khi đó giá trị của biểu thức \(T = a - b + 9c\) bằng −4.
Trong không gian Oxyz, cho mặt phẳng (P): \(2x + 2y - z + 3 = 0\) và các điểm \(A\left( {1;2;3} \right),B\left( {0; - 1;2} \right),C\left( {1;3; - 2} \right)\).
a) Điểm B cách mặt phẳng (P) một khoảng bằng 3.
b) Mặt phẳng (Q) đi qua điểm B và song song với mặt phẳng (P) có phương trình là \(2x + 2y - z - 4 = 0\).
c) Đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P) có phương trình tham số là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 2t\\z = 3 - t\end{array} \right.\).
d) Gọi H(a; b; c) là hình chiếu vuông góc của điểm C lên mặt phẳng (P). Khi đó giá trị của biểu thức \(T = a - b + 9c\) bằng −4.
Quảng cáo
Trả lời:
a) \(d\left( {B,\left( P \right)} \right) = \frac{{\left| {2.0 + 2.\left( { - 1} \right) - 2 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{1}{3}\).
b) Có \(\overrightarrow {{n_P}} = \left( {2;2; - 1} \right)\) là một vectơ pháp tuyến của mặt phẳng (P).
Mặt phẳng (Q) đi qua điểm B và song song với mặt phẳng (P) nhận \(\overrightarrow {{n_P}} = \left( {2;2; - 1} \right)\)làm vectơ pháp tuyến có phương trình là \(2x + 2\left( {y + 1} \right) - \left( {z - 2} \right) = 0 \Leftrightarrow 2x + 2y - z + 4 = 0\).
c) Đường thẳng đi qua điểm A và vuông góc với mặt phẳng (P) nhận \(\overrightarrow {{n_P}} = \left( {2;2; - 1} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 2t\\z = 3 - t\end{array} \right.\).
d) Gọi d là đường thẳng đi qua C và vuông góc với (P) có phương trình là \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 + 2t\\z = - 2 - t\end{array} \right.\).
Gọi H = d Ç (P).
Vì H Î d Þ \(H\left( {1 + 2t;3 + 2t; - 2 - t} \right)\).
Mà H Î (P) nên \(2 + 4t + 6 + 4t + 2 + t + 3 = 0\)\( \Leftrightarrow t = - \frac{{13}}{9}\).
Suy ra \(H\left( { - \frac{{17}}{9};\frac{1}{9}; - \frac{5}{9}} \right)\).
Suy ra \(a = - \frac{{17}}{9};b = \frac{1}{9};c = - \frac{5}{9}\). Khi đó \(T = a - b + 9c = - \frac{{17}}{9} - \frac{1}{9} + 9.\left( {\frac{{ - 5}}{9}} \right) = - 7\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
M chính là giao điểm của đường thẳng AB và mặt phẳng (Oxy).
Ta có \(\overrightarrow {AB} = \left( {5;10; - 2} \right)\).
Đường thẳng AB đi qua điểm A(5; 0; 5) và nhận \(\overrightarrow {AB} = \left( {5;10; - 2} \right)\)làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 5 + 5t\\y = 10t\\z = 5 - 2t\end{array} \right.\).
Vì M Î (Oxy) Þ z = 0 Þ 5 – 2t = 0 \( \Leftrightarrow t = \frac{5}{2}\).
Với \(t = \frac{5}{2}\) thì \(\left\{ \begin{array}{l}x = \frac{{35}}{2}\\y = 25\\z = 0\end{array} \right.\) \( \Rightarrow M\left( {\frac{{35}}{2};25;0} \right)\).
Suy ra \(a = \frac{{35}}{2};b = 25\). Do đó \(a + b = \frac{{35}}{2} + 25 = 42,5\).
Trả lời: 42,5.
Lời giải
Vùng phủ sáng chính là hình cầu tâm I bán kính R = 4000.
Khi đó tọa độ điểm H chính là giao điểm của đường thẳng ID và mặt cầu tâm I, bán kính R.
Ta có phương trình mặt cầu (S) là \({\left( {x - 21} \right)^2} + {\left( {y - 35} \right)^2} + {\left( {z - 50} \right)^2} = {4000^2}\).
Đường thẳng ID đi qua điểm I(21; 35; 50) và nhận \(\overrightarrow {ID} = \left( {5100;623; - 50} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 21 + 5100t\\y = 35 + 623t\\z = 50 - 50t\end{array} \right.\).
Vì H Î ID \( \Rightarrow H\left( {21 + 5100t;35 + 623t;50 - 50t} \right)\).
Mà H Î (S) nên \({\left( {5100t} \right)^2} + {\left( {623t} \right)^2} + {\left( { - 50t} \right)^2} = {4000^2}\)\( \Leftrightarrow 26400629{t^2} = {4000^2}\)\( \Leftrightarrow t \approx \pm 0,78\).
Với \(t \approx - 0,78\)\( \Rightarrow H\left( { - 3957; - 450,94;89} \right)\) và \(\overrightarrow {IH} = \left( { - 3978; - 485,94;39} \right)\).
Khi đó \(\overrightarrow {ID} = - \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) ngược hướng.
Vậy H không thuộc đoạn thẳng ID.
Với \(t \approx 0,78\)\( \Rightarrow H\left( {3900;520,94;11} \right)\) và \(\overrightarrow {IH} = \left( {3978;485,94; - 39} \right)\).
Khi đó \(\overrightarrow {ID} = \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) cùng hướng.
Vậy H thuộc đoạn thẳng ID.
Vậy ví trí cuối cùng trên đoạn ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng là điểm \(H\left( {3900;520,94;11} \right)\) có cao độ là 11.
Trả lời: 11.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
