Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (xem hình vẽ). Khẳng định nào sau đây sai?

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (xem hình vẽ). Khẳng định nào sau đây sai?

A. \(BC{\rm{//}}\left( {SAD} \right)\).
Quảng cáo
Trả lời:
Ta có \(BC\,{\rm{//}}\,AD\) nên \(BC{\rm{//}}\left( {SAD} \right)\) và \(AD{\rm{//}}\left( {SBC} \right)\), vậy đáp án A và đáp án D đúng.
Lại có \(CD\,{\rm{//}}\,AB\) nên \(CD{\rm{//}}\left( {SAB} \right)\), vậy đáp án B đúng.
Vì \[\left\{ \begin{array}{l}S \in SA\\S \in \left( {SCD} \right)\end{array} \right. \Rightarrow SA \cap \left( {SCD} \right) = S\], vậy đáp án C sai. Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Tập xác định của hàm số đã cho là \(\mathbb{R}\).
b) Sai. Ta có \(y = \sin \left( {2x - \frac{\pi }{2}} \right) = - \sin \left( {\frac{\pi }{2} - 2x} \right) = - \cos 2x\).
Do đó \(y\left( { - x} \right) = - \cos \left( { - 2x} \right) = - \cos 2x = y\left( x \right)\). Vậy hàm số đã cho là hàm số chẵn.
c) Đúng. Ta có \(y = - \cos 2x\) nên hàm số đã cho tuần hoàn với chu kì \(T = \frac{{2\pi }}{2} = \pi \).
d) Sai. Đặt \(t = 2x\). Hàm số đã cho trở thành \(f\left( t \right) = - \cos t\).
Vì \(x \in \left[ {\frac{{ - \pi }}{8};\frac{\pi }{3}} \right] \Rightarrow t \in \left[ {\frac{{ - \pi }}{4};\frac{{2\pi }}{3}} \right]\).
Ta có bảng biến thiên của hàm số \(f\left( t \right) = - \cos t\):

Từ bảng biến thiên ta có hàm số đạt giá trị lớn nhất bằng \(\frac{1}{2}\).
Lời giải
Gọi \({u_1}\left( {\rm{m}} \right)\) là quãng đường người chơi rơi xuống ở lần thứ nhất, ta có \({u_1} = 150\); \({v_1}\left( {\rm{m}} \right)\) là quãng đường người chơi được kéo lên ở lần thứ nhất, ta có: \({v_1} = 150 \cdot 0,6 = 90\).
\({u_2}\left( {\rm{m}} \right)\) là quãng đường người chơi rơi xuống ở lần thứ hai, ta có \({u_2} = {v_1} = 0,6{u_1}\); \({v_2}\left( {\rm{m}} \right)\) là quãng đường người chơi được kéo lên ở lần thứ hai, ta có: \({v_2} = 0,6{u_2} = 0,6{v_1}\).
Như vậy, ta có hai cấp số nhân đều có công bội \(0,6\) là: \({u_1},{u_2},..,{u_{15}}\) và \({v_1},{v_2},..,{v_{15}}\) với \({u_1} = 150\) và \({v_1} = 90.\)
Ta có \({u_1} + {u_2} + ... + {u_{15}} = 150 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right)\); \({v_1} + {v_2} + ... + {v_{15}} = 90 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right)\).
Vậy quãng đường người đó đi được sau 15 lần rơi xuống và lại được kéo lên (tính từ lúc bắt đầu nhảy) là:
\(\left( {{u_1} + {u_2} + ... + {u_{15}}} \right) + \left( {{v_1} + {v_2} + ... + {v_{15}}} \right) = 240 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right) \approx 600\left( {\rm{m}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
