Câu hỏi:

17/10/2025 214 Lưu

PHẦN II. TỰ LUẬN

Hằng ngày, mực nước của một con kênh lên xuống theo thuỷ triều. Độ sâu \(h\,\,{\rm{(m)}}\) của mực nước trong kênh tính theo thời gian \(t\) (giờ) trong một ngày \((0 \le t < 24)\) cho bởi công thức \(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\). Tìm \(t\) để độ sâu của mực nước là \(15{\rm{\;m}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để độ sâu của mực nước là \(15{\rm{\;m}}\) thì:

\(h = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 = 15 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1 \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow t = - \frac{6}{\pi } + 12k\,\,\left( {k \in \mathbb{Z}} \right)\).

Do \(0 \le t < 24{\rm{ n\^e n }}0 \le - \frac{6}{\pi } + 12k < 24\)\( \Leftrightarrow \frac{6}{\pi } \le 12k < 24 + \frac{6}{\pi } \Leftrightarrow \frac{1}{{2\pi }} \le k < 2 + \frac{1}{{2\pi }}\).

\(k \in \mathbb{Z}\) nên \(k \in \left\{ {1\,;2} \right\}\).

Với \[k = 1\] thì \(t = - \frac{6}{\pi } + 12 \cdot 1 \approx 10,09\) (giờ);

Với \[k = 2\] thì \(t = - \frac{6}{\pi } + 12 \cdot 2 \approx 22,09\) (giờ).

Vậy lúc 10,09 giờ và 22,09 giờ thì mực nước có độ sâu là 15 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Tập xác định của hàm số đã cho là \(\mathbb{R}\).

b) Sai. Ta có \(y = \sin \left( {2x - \frac{\pi }{2}} \right) = - \sin \left( {\frac{\pi }{2} - 2x} \right) = - \cos 2x\).

Do đó \(y\left( { - x} \right) = - \cos \left( { - 2x} \right) = - \cos 2x = y\left( x \right)\). Vậy hàm số đã cho là hàm số chẵn.

c) Đúng. Ta có \(y = - \cos 2x\) nên hàm số đã cho tuần hoàn với chu kì \(T = \frac{{2\pi }}{2} = \pi \).

d) Sai. Đặt \(t = 2x\). Hàm số đã cho trở thành \(f\left( t \right) = - \cos t\).

\(x \in \left[ {\frac{{ - \pi }}{8};\frac{\pi }{3}} \right] \Rightarrow t \in \left[ {\frac{{ - \pi }}{4};\frac{{2\pi }}{3}} \right]\).

Ta có bảng biến thiên của hàm số \(f\left( t \right) = - \cos t\):

Cho hàm số \(y = \sin \left( {2x - \frac{\pi }{2}} \right)\). (ảnh 1)

Từ bảng biến thiên ta có hàm số đạt giá trị lớn nhất bằng \(\frac{1}{2}\).

Lời giải

Gọi \({u_1}\left( {\rm{m}} \right)\) là quãng đường người chơi rơi xuống ở lần thứ nhất, ta có \({u_1} = 150\); \({v_1}\left( {\rm{m}} \right)\) là quãng đường người chơi được kéo lên ở lần thứ nhất, ta có: \({v_1} = 150 \cdot 0,6 = 90\).

\({u_2}\left( {\rm{m}} \right)\) là quãng đường người chơi rơi xuống ở lần thứ hai, ta có \({u_2} = {v_1} = 0,6{u_1}\); \({v_2}\left( {\rm{m}} \right)\) là quãng đường người chơi được kéo lên ở lần thứ hai, ta có: \({v_2} = 0,6{u_2} = 0,6{v_1}\).

Như vậy, ta có hai cấp số nhân đều có công bội \(0,6\) là: \({u_1},{u_2},..,{u_{15}}\)\({v_1},{v_2},..,{v_{15}}\) với \({u_1} = 150\)\({v_1} = 90.\)

Ta có \({u_1} + {u_2} + ... + {u_{15}} = 150 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right)\); \({v_1} + {v_2} + ... + {v_{15}} = 90 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right)\).

Vậy quãng đường người đó đi được sau 15 lần rơi xuống và lại được kéo lên (tính từ lúc bắt đầu nhảy) là:

\(\left( {{u_1} + {u_2} + ... + {u_{15}}} \right) + \left( {{v_1} + {v_2} + ... + {v_{15}}} \right) = 240 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right) \approx 600\left( {\rm{m}} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP