Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây đai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài \(150{\rm{\;m}}\). Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy được kéo lên một quãng đường có độ dài bằng \(60\% \) so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa được kéo lên (Hình vẽ).

Tính tổng quãng đường người đó đi được sau 15 lần kéo lên và lại rơi xuống.
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây đai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài \(150{\rm{\;m}}\). Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy được kéo lên một quãng đường có độ dài bằng \(60\% \) so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa được kéo lên (Hình vẽ).

Tính tổng quãng đường người đó đi được sau 15 lần kéo lên và lại rơi xuống.
Quảng cáo
Trả lời:
Gọi \({u_1}\left( {\rm{m}} \right)\) là quãng đường người chơi rơi xuống ở lần thứ nhất, ta có \({u_1} = 150\); \({v_1}\left( {\rm{m}} \right)\) là quãng đường người chơi được kéo lên ở lần thứ nhất, ta có: \({v_1} = 150 \cdot 0,6 = 90\).
\({u_2}\left( {\rm{m}} \right)\) là quãng đường người chơi rơi xuống ở lần thứ hai, ta có \({u_2} = {v_1} = 0,6{u_1}\); \({v_2}\left( {\rm{m}} \right)\) là quãng đường người chơi được kéo lên ở lần thứ hai, ta có: \({v_2} = 0,6{u_2} = 0,6{v_1}\).
Như vậy, ta có hai cấp số nhân đều có công bội \(0,6\) là: \({u_1},{u_2},..,{u_{15}}\) và \({v_1},{v_2},..,{v_{15}}\) với \({u_1} = 150\) và \({v_1} = 90.\)
Ta có \({u_1} + {u_2} + ... + {u_{15}} = 150 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right)\); \({v_1} + {v_2} + ... + {v_{15}} = 90 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right)\).
Vậy quãng đường người đó đi được sau 15 lần rơi xuống và lại được kéo lên (tính từ lúc bắt đầu nhảy) là:
\(\left( {{u_1} + {u_2} + ... + {u_{15}}} \right) + \left( {{v_1} + {v_2} + ... + {v_{15}}} \right) = 240 \cdot \left( {\frac{{1 - 0,{6^{15}}}}{{1 - 0,6}}} \right) \approx 600\left( {\rm{m}} \right).\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có \[MN\] là đường trung bình tam giác \[SAC\].
Suy ra \[MN\,{\rm{//}}\,AC\].
Do đó: \[\left\{ \begin{array}{l}MN{\rm{//}}AC\\MN \not\subset \left( {ABCD} \right);AC \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow MN{\rm{//}}\left( {ABCD} \right).\]
b) Gọi \[I\] là giao điểm của \[MN\] và \[SO\].
\(Q\) là giao điểm của \[PI\] và \[SD\].
Ta có \[Q \in PI,PI \subset \left( {MNP} \right) \Rightarrow Q \in \left( {MNP} \right).\]
Mà \[Q \in SD\]. Suy ra \(Q\) là giao điểm của \(SD\) và mặt phẳng \(\left( {MNP} \right)\).
Chứng minh được \[I\]là trung điểm \[SO\] nên \[PI\] là đường trung bình tam giác \[SBO\].
Suy ra \[PI{\rm{//}}SB\] hay \[PQ{\rm{//}}SB\].
Xét tam giác SBD có \[PQ{\rm{//}}SB\] nên \(\frac{{SQ}}{{SD}} = \frac{{BP}}{{BD}} = \frac{1}{4}\).
Câu 2
A. \(BC{\rm{//}}\left( {SAD} \right)\).
Lời giải
Ta có \(BC\,{\rm{//}}\,AD\) nên \(BC{\rm{//}}\left( {SAD} \right)\) và \(AD{\rm{//}}\left( {SBC} \right)\), vậy đáp án A và đáp án D đúng.
Lại có \(CD\,{\rm{//}}\,AB\) nên \(CD{\rm{//}}\left( {SAB} \right)\), vậy đáp án B đúng.
Vì \[\left\{ \begin{array}{l}S \in SA\\S \in \left( {SCD} \right)\end{array} \right. \Rightarrow SA \cap \left( {SCD} \right) = S\], vậy đáp án C sai. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
