Câu hỏi:

19/10/2025 42 Lưu

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 1}}{{x - 1}}\) bằng    

A. 1.                         
B. \( + \infty .\)       
C. \( - \infty .\) 
D. 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {2x - 1} \right) = 2.1 - 1 = 1 > 0;\)

          \(\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0,\) \(x - 1 > 0\) khi \(x > 1.\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 1}}{{x - 1}} = + \infty .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({\rm{D}} = \mathbb{R}.\)              
B. \[{\rm{D}} = \mathbb{R}\backslash \left\{ 0 \right\}.\]    
C. \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)                              
D. \[{\rm{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}.\]

Lời giải

Đáp án đúng là: C

Hàm số xác định khi và chỉ khi \(\sin x \ne 0 \Leftrightarrow x \ne k\pi ,{\rm{ }}k \in \mathbb{Z}.\)

Vật tập xác định \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)

Lời giải

Trả lời: 9

Vị trí cân bằng của vật dạo động điều hòa là vị trí vật đứng yên, khi đó \(x = 0\), ta có

\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\[ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\]\[ \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\].

Trong khoảng thời gian từ 0 đến 6 giây, tức là \(0 \le t \le 6\) hay

\[0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\]\[ \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\].

\(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\).

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cần bằng 9 lần.

Câu 4

A. \({u_4} = \frac{1}{4}\).                      
B. \({u_5} = \frac{1}{{16}}\).          
C. \({u_5} = \frac{1}{{32}}\).          
D. \({u_3} = \frac{1}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP